33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell

      , , , , ,
      Neuroscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various missense mutations were identified in TAR DNA-binding protein-43 (TDP-43) in patients with amyotrophic lateral sclerosis (ALS). To explore the toxic effect of mutant TDP-43, we generated stable transfection of wild-type and mutant TDP-43 in motor neuron-like cell line. We found that mutant TDP-43 induced mitochondrial dysfunction, oxidative damage and nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2). Nrf2 is an indicator and modulator of oxidative stress and is known to promote the expression of phase || detoxification enzyme including heme oxygenase-1 (HO-1). However, HO-1 was down regulated in cells expressing the mutant TDP-43, and could not be restored by sulforaphane which is a known stimulator of Nrf2 and phase || detoxification enzyme, including HO-1. Nevertheless, sulforaphane reduced the level of lactate dehydrogenase and lipoperoxidation products in cells expressing TDP-43 mutant. However, sulforaphane could upregulate the expression of HO-1 and NAD(P)H/quinone oxidoreductase-1 (NQO-1) in cells transfected with the empty vector and the wild-type TDP-43. Thus, sulforaphane protected cells against mutant TDP-43 independent of Nrf2-antioxidant response element (ARE) pathway. How mutant TDP-43 reduces expression of HO-1 and prevents sulforaphane from activating Nrf2 signaling remains to be investigated. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          Elsevier BV
          03064522
          September 2010
          September 2010
          : 169
          : 4
          : 1621-1629
          Article
          10.1016/j.neuroscience.2010.06.018
          20600671
          5aa0731d-efe7-4046-a173-b0e50c81d7f5
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article