17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The simple-septate basidiomycetes: a synopsis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

          O. Gascuel (1997)
          We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating a new mode which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during the next steps. Moreover, in comparison with NJ's estimates, these estimates become better and better as the algorithm proceeds. BIONJ retains the good properties of NJ--especially its low run time. Computer simulations have been performed with 12-taxon model trees to determine BIONJ's efficiency. When the substitution rates are low (maximum pairwise divergence approximately 0.1 substitutions per site) or when they are constant among lineages, BIONJ is only slightly better than NJ. When the substitution rates are higher and vary among lineages,BIONJ clearly has better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution rates (maximum pairwise divergence approximately 1.0 substitutions per site), the error reduction may even rise above 50%, while the probability of finding the correct tree may be augmented by as much as 15%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment.

            The performance and time complexity of an improved version of the segment-to-segment approach to multiple sequence alignment is discussed. In this approach, alignments are composed from gap-free segment pairs, and the score of an alignment is defined as the sum of so-called weights of these segment pairs. A modification of the weight function used in the original version of the alignment program DIALIGN has two important advantages: it can be applied to both globally and locally related sequence sets, and the running time of the program is considerably improved. The time complexity of the algorithm is discussed theoretically, and the program running time is reported for various test examples. The program is available on-line at the Bielefeld University Bioinformatics Server (BiBiServ) http://bibiserv.TechFak.Uni-Bielefeld.DE/dial ign/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions.

              Basidiomycetous yeasts in the Urediniomycetes and Hymenomycetes were examined by sequence analysis in two ribosomal DNA regions: the D1/D2 variable domains at the 5' end of the large subunit rRNA gene (D1/D2) and the internal transcribed spacers (ITS) 1 and 2. Four major lineages were recognized in each class: Microbotryum, Sporidiobolus, Erythrobasidium and Agaricostilbum in the Urediniomycetes; Tremellales, Trichosporonales, Filobasidiales and Cystofilobasidiales in the Hymenomycetes. Bootstrap support for many of the clades within those lineages is weak; however, phylogenetic analysis provides a focal point for in-depth study of biological relationships. Combined sequence analysis of the D1/D2 and ITS regions is recommended for species identification, while species definition requires classical biological information such as life cycles and phenotypic characterization.
                Bookmark

                Author and article information

                Journal
                Mycological Progress
                Mycol Progress
                Springer Nature
                1617-416X
                1861-8952
                March 2006
                April 2006
                : 5
                : 1
                : 41-66
                Article
                10.1007/s11557-006-0502-0
                5adfc61b-f46a-46ce-9232-8e97d8c3590b
                © 2006
                History

                Comments

                Comment on this article