0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topological Phase Transitions in Spatial Networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most social, technological and biological networks are embedded in a finite dimensional space, and the distance between two nodes influences the likelihood that they link to each other. Indeed, in social systems, the chance that two individuals know each other drops rapidly with the distance between them; in the cell, proteins predominantly interact with proteins in the same cellular compartment; in the brain, neurons mainly link to nearby neurons. Most modeling frameworks that aim to capture the empirically observed degree distributions tend to ignore these spatial constraints. In contrast, models that account for the role of the physical distance often predict bounded degree distributions, in disagreement with the empirical data. Here we address a long-standing gap in the spatial network literature by deriving several key network characteristics of spatial networks, from the analytical form of the degree distribution to path lengths and local clustering. The mathematically exact results predict the existence of two distinct phases, each governed by a different dynamical equation, with distinct testable predictions. We use empirical data to offer direct evidence for the practical relevance of each of these phases in real networks, helping better characterize the properties of spatial networks.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spatial Networks

          (2010)
          Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated to the length of edges which in turn has dramatic effects on the topological structure of these networks. We will expose thoroughly the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical high-density counterstream architectures.

            Small-world networks provide an appealing description of cortical architecture owing to their capacity for integration and segregation combined with an economy of connectivity. Previous reports of low-density interareal graphs and apparent small-world properties are challenged by data that reveal high-density cortical graphs in which economy of connections is achieved by weight heterogeneity and distance-weight correlations. These properties define a model that predicts many binary and weighted features of the cortical network including a core-periphery, a typical feature of self-organizing information processing systems. Feedback and feedforward pathways between areas exhibit a dual counterstream organization, and their integration into local circuits constrains cortical computation. Here, we propose a bow-tie representation of interareal architecture derived from the hierarchical laminar weights of pathways between the high-efficiency dense core and periphery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Geographic routing in social networks.

              We live in a "small world," where two arbitrary people are likely connected by a short chain of intermediate friends. With scant information about a target individual, people can successively forward a message along such a chain. Experimental studies have verified this property in real social networks, and theoretical models have been advanced to explain it. However, existing theoretical models have not been shown to capture behavior in real-world social networks. Here, we introduce a richer model relating geography and social-network friendship, in which the probability of befriending a particular person is inversely proportional to the number of closer people. In a large social network, we show that one-third of the friendships are independent of geography and the remainder exhibit the proposed relationship. Further, we prove analytically that short chains can be discovered in every network exhibiting the relationship.
                Bookmark

                Author and article information

                Journal
                26 June 2018
                Article
                1806.10114
                5b642dac-5256-4240-82f5-b1b1521f5f3a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                15 pages, 3 figures
                physics.soc-ph cond-mat.stat-mech

                Condensed matter,General physics
                Condensed matter, General physics

                Comments

                Comment on this article