8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibacterial and Antioxidant Activities of Isolated Compounds from Prosopis africana Leaves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prosopis africana (G. &Perr.) Taub (Mimosaceae) is a large tree native to dry tropical Africa and characteristic of dry leguminous forests. Different parts of this plant are used to treat wounds, skin infection, and to fight against cancer. Literature review indicated various pharmacological properties. Despite these medicinal properties, the chemical composition studies remain limited. This study aims to isolate and characterize secondary metabolites from P. africana leaves and evaluate their antibacterial and antioxidant properties. Air-dried powdered leaves of P. africana were macerated in methanol at room temperature and partitioned with ethyl acetate. The EtOAc extract was subjected successively to flash and column chromatographies in order to isolate compounds. The structure of the isolates was determined with help of spectroscopic data including 1D and 2D NMR experiments and comparison with literature data. The antibacterial activities were evaluated via determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antioxidant activities were evaluated via gallic acid equivalent antioxidant capacity (GEAC) and diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays. The chemical investigation of the EtOAc extract led to the isolation of seven compounds: (2 E, 6 E) farnesylamine (1), myricetin-3-O-rhamnoside (2), bis(2-ethylhexyl) benzene-1,2-dicarboxylate (3), lupeol (4), ß-sitosterol (5), stigmasterol glycoside (6), and a mixture of bis(2-ethylhexyl) benzene-1,2-dicarboxylate (3) and bis(2-ethylhexyl) benzene-1,4-dicarboxylate (7) in ratio 1 : 2. Compound 1 is described here for the first time as a natural product with complete 1H and 13C assignments. Compounds 3 and 7 were identified as artefacts from dichloromethane. Sesquiterpene amine (1) is reported in Prosopis genus for the first time. Antibacterial and antioxidant activities of isolated compounds were investigated. Among the tested samples, the EtOAc extract and compound 2 exhibited the highest antioxidant (EC 50 = 5.67–77.56  μg/mL; GEAC = 36.58–89.28  μg/mL) and antibacterial (MIC = 8–64  μg/mL) activities against gram-negative and gram-positive bacteria. The EtOAc extract and compound 2 from P. africana exhibited antibacterial activity through bacteriolytic effects and reduction of the antioxidant defenses in the bacterial cells. Furthermore, the chemotaxonomic significance of isolated compounds was discussed. The antibacterial and antioxidant activities of ethyl acetate extract and compound 2 can justify the traditional uses of P. africana leaves for the treatment of diseases related to bacterial infections. The presence of compounds 1, 2, and 4 in this plant should also be considered as valuable chemotaxonomic features.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          [241 Total antioxidant status in plasma and body fluids

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial antioxidant defense enzymes.

            Free radicals are often described as chemical compounds characterized by unpaired electrons in their outer orbital rendering them highly reactive species. In mammalians, studies on free radicals were focused on reactive oxygen species (ROS) or reactive nitrogen species (RNS) due to their relative importance in physiological as well as in pathological processes. These cellular compounds are produced by different physiological systems such as the aerobic metabolism and play a major role in cell signaling pathways but also in the host immune defenses against pathogenic microorganisms. ROS and RNS are highly reactive species with potentially harmful effects on any cellular components (lipids, proteins and nucleic acids) when produced with a high level. To maintain ROS and RNS at a non-toxic concentration, enzymatic and non-enzymatic cellular antioxidants coordinate the balance between their production and their degradation. Superoxide dismutases, catalases, glutathione system, thioredoxin system, peroxidase systems, flavohemoglobins and nitrate or nitrite reductases represent the prominent enzymatic antioxidants used to scavenge excess of internal as well as external ROS and RNS. Bacteria, fungi and parasites also display similar enzymatic activities to escape the host oxidative defenses during the immune response against infectious processes. Here we summarize current knowledge on the enzymatic systems that allow microorganisms to fight against ROS and RNS, and shed light on the role that take some of them in microbial infections. Such microbial protective systems are considered as virulence factors, and therefore represent key targets for diagnosis of the infections or development of anti-infectious drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophil-generated oxidative stress and protein damage inStaphylococcus aureus

              Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus , leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets. Chemical warfare at the host–pathogen interface is reviewed here from the perspective of Staphylococcus aureus , an influential pathogen to human health, to better understand the defenses it employs during infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Anal Chem
                Int J Anal Chem
                ijac
                International Journal of Analytical Chemistry
                Hindawi
                1687-8760
                1687-8779
                2022
                17 February 2022
                : 2022
                : 4205823
                Affiliations
                1Department of Chemistry, Faculty of Sciences, The University of Maroua, Maroua, Cameroon
                2Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers' Training College, University of Maroua, Box 55, Maroua, Cameroon
                3Research Unit of Microbiology and Antimicrobial Substances, Faculty of Sciences, University of Dschang, Dschang, P. O Box 67, Cameroon
                4Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
                5Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
                Author notes

                Academic Editor: Valentina Venuti

                Author information
                https://orcid.org/0000-0002-9238-0850
                https://orcid.org/0000-0002-8088-463X
                https://orcid.org/0000-0002-2952-8488
                https://orcid.org/0000-0002-0309-2655
                Article
                10.1155/2022/4205823
                8872693
                5b79af5d-ddb2-406c-a861-617b50c65dbc
                Copyright © 2022 Lambert Yanda et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 December 2021
                : 20 January 2022
                : 26 January 2022
                Categories
                Research Article

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article