24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transforming Growth Factor-Beta-Induced Protein (TGFBI)/(βig-H3): A Matrix Protein with Dual Functions in Ovarian Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transforming growth factor-beta-induced protein (TGFBI, also known as βig-H3 and keratoepithelin) is an extracellular matrix protein that plays a role in a wide range of physiological and pathological conditions including diabetes, corneal dystrophy and tumorigenesis. Many reports indicate that βig-H3 functions as a tumor suppressor. Loss of βig-H3 expression has been described in several cancers including ovarian cancer and promoter hypermethylation has been identified as an important mechanism for the silencing of the TGFBI gene. Our recent findings that βig-H3 is down-regulated in ovarian cancer and that high concentrations of βig-H3 can induce ovarian cancer cell death support a tumor suppressor role. However, there is also convincing data in the literature reporting a tumor-promoting role for βig-H3. We have shown βig-H3 to be abundantly expressed by peritoneal cells and increase the metastatic potential of ovarian cancer cells by promoting cell motility, invasion, and adhesion to peritoneal cells. Our findings suggest that βig-H3 has dual functions and can act both as a tumor suppressor or tumor promoter depending on the tumor microenvironment. This article reviews the current understanding of βig-H3 function in cancer cells with particular focus on ovarian cancer.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation.

          Metastasis, the major cause of cancer death, is a multistep process that requires interactions between cancer cells and stromal cells and between cancer cells and extracellular matrix. Molecular alterations of the extracellular matrix in the tumor microenvironment have a considerable impact on the metastatic process during tumorigenesis. Here we report that elevated expression of betaig-h3/TGFBI (transforming growth factor, beta-induced), an extracellular matrix protein secreted by colon cancer cells, is associated with high-grade human colon cancers. Ectopic expression of the betaig-h3 protein enhanced the aggressiveness and altered the metastatic properties of colon cancer cells in vivo. Inhibition of betaig-h3 expression dramatically reduced metastasis. Mechanistically, betaig-h3 appears to promote extravasation, a critical step in the metastatic dissemination of cancer cells, by inducing the dissociation of VE-cadherin junctions between endothelial cells via activation of the integrin alphavbeta5-Src signaling pathway. Thus, cancers associated with overexpression of betaig-h3 may have an increased metastatic potential, leading to poor prognosis in cancer patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta.

            Transforming growth factor-beta (TGF-beta) is capable of affecting the proliferation of many cell types. To identify novel genes whose protein products may mediate cellular responses to this factor, a cDNA library was made from mRNA isolated from a human lung adenocarcinoma cell line (A549) that had been treated for 3 days with TGF-beta. The library was screened by differential hybridization and a cDNA clone, beta ig-h3, was isolated. This gene was induced up to 20-fold in A549 cells after 2 days of treatment with TGF-beta 1. It was also induced in several other cell lines, including PC-3 and H2981. DNA sequence analysis of beta ig-h3 indicated that it encoded a novel protein, beta IG-H3, of 683 amino acids, which contained an amino-terminal secretory sequence and a carboxy-terminal Arg-Gly-Asp (RGD) sequence that can serve as a ligand recognition site for several integrins. beta IG-H3 also contained short amino acid regions homologous to similar regions in Drosophila fasciclin-I and four homologous internal domains, which can be folded into a potential bivalent structure and could act as a bridge between cells expressing the appropriate ligand. beta ig-h3 RNA was detected in several cell lines and tissues. COS cells transfected with plasmids encoding beta IG-H3 secreted a major 68-kD protein that was detected by immunoblotting using antipeptide antibodies. Since beta ig-h3 is induced in several cell lines whose proliferation is affected by TGF-beta 1, it may be involved in mediating some of the signals of this multifunctional growth modulator.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3.

              Alternative activation of macrophages, induced by Th2 cytokines and glucocorticoids, is essential for the proper functioning of anti-inflammatory immune reactions. To this end, alternatively activated macrophages (aaMPhi) express a not yet fully unravelled set of genes including cytokines such as alternative macrophage activation-associated CC-chemokine (AMAC)-1 and pattern recognition molecules such as the scavenger receptor CD163. In order to further characterize the molecular repertoire of aaMPhi, differential gene expression was analyzed by combining subtractive suppression cloning and differential hybridization. We show here that aaMPhi induced by interleukin (IL)-4 overexpress the prototype extracellular matrix (ECM) protein fibronectin on the mRNA and protein level. This overall increase is accompanied by a shift in fibronectin splice variants from an embryonic to a mature pattern. In addition, the expression of another ECM protein, betaIG-H3, is also upregulated by IL-4 in aaMPhi. In contrast to IL-4 and in line with its inhibitory effect on wound healing, dexamethasone exerts a strongly suppressive effect on fibronectin and betaIG-H3 expression. In conclusion, overexpression of ECM proteins induced by IL-4 in macrophages suggests that aaMPhi may be involved in ECM deposition and tissue remodelling during the healing phase of acute inflammatory reactions and in chronic inflammatory diseases.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                2012
                21 August 2012
                : 13
                : 8
                : 10461-10477
                Affiliations
                [1 ] Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia; E-Mails: miranda.ween@ 123456adelaide.edu.au (M.P.W.); martin.oehler@ 123456adelaide.edu.au (M.K.O.)
                [2 ] Research Centre for Infectious Diseases, School of Molecular Biosciences, University of Adelaide, South Australia 5005, Australia
                [3 ] Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: carmela.ricciardelli@ 123456adelaide.edu.au ; Tel.: +61-8-8313-8255; Fax: +61-8-8313-4099.
                Article
                ijms-13-10461
                10.3390/ijms130810461
                3431872
                22949874
                5b8b5830-d3e2-49b5-bbbf-5f203b6922cc
                © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 03 August 2012
                : 16 August 2012
                Categories
                Review

                Molecular biology
                adhesion,invasion,extracellular matrix,ovarian cancer,tgfbi,tumor suppressor,metastasis
                Molecular biology
                adhesion, invasion, extracellular matrix, ovarian cancer, tgfbi, tumor suppressor, metastasis

                Comments

                Comment on this article