6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Galanin-Like Peptide mRNA Alterations in Arcuate Nucleus and Neural Lobe of Streptozotocin-Diabetic and Obese Zucker Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Galanin-like peptide (GALP) is a 60-amino-acid peptide with structural similarities to galanin and a high affinity for galanin receptors. GALP is expressed by a discrete population of neurons in the arcuate nucleus (ARC) and median eminence of the hypothalamus of several species, including the rat. GALP neurons express leptin receptors and GALP mRNA levels are decreased slightly in fasted rats and stimulated significantly by acute leptin treatment in combination with fasting. In studies to further explore the leptin dependence of GALP expression, we examined GALP mRNA levels in the hypothalamus of obese Zucker and streptozotocin-induced diabetic (STZ-DM) rats. In leptin receptor-deficient obese Zucker rats, with 75% higher body weight than lean littermates, GALP mRNA levels in the ARC were decreased by 75%, while neuropeptide Y (NPY) mRNA levels were increased 7-fold (n = 5, p < 0.001), consistent with earlier reports. In hypoleptinemic diabetic rats with 4.5-fold higher blood glucose and 15% lower body weight than controls, GALP mRNA levels in the ARC were decreased by 90%, while NPY mRNA levels were increased 9-fold (n = 5, p < 0.001). GALP is also expressed by pituicytes in the neural lobe of the rat pituitary gland and GALP expression is increased by osmotic stimulation such as dehydration and salt loading. Thus, in STZ-DM rats that are in a hyperosmotic state with elevated plasma vasopressin levels, GALP mRNA levels were increased by ∼20-fold in the neural lobe relative to control (n = 4, p < 0.001). The current findings are consistent with a strong tonic influence of leptin receptor signalling on hypothalamic GALP expression under normal conditions, and possible abnormalities in GALP neuronal signalling and their putative targets, thyrotropin-releasing hormone and gonadotropin hormone-releasing hormone neurons, under pathophysiological conditions such as diabetes and obesity. Our data in STZ-DM rats also clearly demonstrate that GALP gene expression is differentially regulated in neurons and pituicytes.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Leptin regulation of neuroendocrine systems.

          The discovery of leptin has enhanced understanding of the interrelationship between adipose energy stores and neuronal circuits in the brain involved in energy balance and regulation of the neuroendocrine axis. Leptin levels are dependent on the status of fat stores as well as changes in energy balance as a result of fasting and overfeeding. Although leptin was initially thought to serve mainly as an anti-satiety hormone, recent studies have shown that it mediates the adaptation to fasting. Furthermore, leptin has been implicated in the regulation of the reproductive, thyroid, growth hormone, and adrenal axes, independent of its role in energy balance. Although it is widely known that leptin acts on hypothalamic neuronal targets to regulate energy balance and neuroendocrine function, the specific neuronal populations mediating leptin action on feeding behavior and autonomic and neuroendocrine function are not well understood. In this review, we have discussed how leptin engages arcuate hypothalamic neurons expressing putative orexigenic peptides, e.g., neuropeptide Y and agouti-regulated peptide, and anorexigenic peptides, e.g., pro-opiomelanocortin (precursor of alpha-melanocyte-stimulating hormone) and cocaine- and amphetamine-regulated transcript. We show that leptin's effects on energy balance and the neuroendocrine axis are mediated by projections to other hypothalamic nuclei, e.g., paraventricular, lateral, and perifornical areas, as well as other sites in the brainstem, spinal cord, and cortical and subcortical regions. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression.

            To test the hypothesis that diabetic hyperphagia results from insulin deficiency in the brain, diabetic rats (streptozotocin-induced) were given an intracerebroventricular (ICV) infusion of saline or insulin (at a dose that did not affect plasma glucose levels) for 6 days. Food and water intake were significantly increased in diabetic rats, but only food intake was affected by ICV insulin. Diabetic hyperphagia was reduced 58% by ICV insulin compared with ICV saline (P < 0.05) and was accompanied by a 69% increase in diabetes-induced weight loss (P < 0.05). To evaluate whether central nervous system (CNS) insulin deficiency affects expression of neuropeptides involved in food intake, in situ hybridization was done for neuropeptide Y (NPY), which stimulates feeding, in the hypothalamic arcuate nucleus and for cholecystokinin (CCK) and corticotropin-releasing hormone (CRH), which inhibit feeding, in the hypothalamic paraventricular nucleus. In diabetic rats, NPY mRNA hybridization increased 280% (P < 0.05), an effect reduced 40% by ICV insulin (P < 0.05). CCK mRNA hybridization increased 50% in diabetic rats (P < 0.05), a response reduced slightly by ICV insulin (P < 0.05), whereas CRH mRNA hybridization decreased 33% in diabetic rats (P < 0.05) and was unchanged by ICV insulin. The results demonstrate that CNS infusion of insulin to diabetic rats reduces both hyperphagia and overexpression of hypothalamic NPY mRNA. This observation supports the hypothesis that a deficiency of insulin in the brain is an important cause of diabetic hyperphagia and that increased hypothalamic NPY gene expression contributes to this phenomenon.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Galanin receptor subtypes.

              The neuropeptide galanin, which is widely expressed in brain and peripheral tissues, exerts a broad range of physiological effects. Pharmacological studies using peptide analogues have led to speculation about multiple galanin receptor subtypes. Since 1994, a total of three G-protein-coupled receptor (GPCR) subtypes for galanin have been cloned (GAL1, gal2 and gal3). Potent, selective antagonists are yet to be found for any of the cloned receptors. Major challenges in this field include linking the receptor clones with each of the known physiological actions of galanin and evaluating the evidence for additional galanin receptor subtypes.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2004
                November 2004
                20 August 2004
                : 79
                : 6
                : 327-337
                Affiliations
                aHoward Florey Institute of Experimental Physiology and Medicine, bDepartment of Medicine, Austin Health, and cDepartment of Anatomy and Cell Biology, University of Melbourne, Melbourne, Vic., Australia
                Article
                79752 Neuroendocrinology 2004;79:327–337
                10.1159/000079752
                15256810
                5c12558a-8554-41d5-8eae-30b84bdf2c22
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 4, Tables: 3, References: 55, Pages: 11
                Categories
                Neuroendocrine Control of Feeding Behaviour

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Leptin,Galanin receptors,Diabetes,Vasopressin,Galanin-like peptide,Reproduction,Streptozotocin,Arcuate nucleus,Obesity,Pituicytes,Neuropeptide Y

                Comments

                Comment on this article