14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure.

      Cardiovascular Research
      Animals, Apoptosis, physiology, Cell Line, Cytokines, genetics, Endoplasmic Reticulum, Fibrosis, Heart Failure, pathology, physiopathology, Humans, I-kappa B Proteins, antagonists & inhibitors, In Vitro Techniques, Inflammation Mediators, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mutant Proteins, metabolism, Myocardial Infarction, Myocytes, Cardiac, Stress, Physiological, Transcription Factor RelA, Ventricular Remodeling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          the role of nuclear factor (NF)-κB in heart failure (HF) is not well defined. We sought to determine whether myocyte-localized NF-κB p65 activation in HF exacerbates post-infarction remodelling and promotes maladaptive endoplasmic reticulum (ER) stress. non-transgenic (NTg) and transgenic (Tg) mice with myocyte-restricted overexpression of a phosphorylation-resistant inhibitor of κBα (IκBα(S32A,S36A)) underwent coronary ligation (to induce HF) or sham operation. Over 4 weeks, the remote myocardium of ligated hearts exhibited robust NF-κB activation that was almost exclusively p65 beyond 24 h. Compared with sham at 4 weeks, NTg HF hearts were dilated and dysfunctional, and exhibited hypertrophy, fibrosis, up-regulation of inflammatory cytokines, increased apoptosis, down-regulation of ER protein chaperones, and up-regulation of the ER stress-activated pro-apoptotic factor CHOP. Compared with NTg HF, Tg-IκBα(S32A,S36A) HF mice exhibited: (i) improved survival, chamber remodelling, systolic function, and pulmonary congestion, (ii) markedly diminished NF-κB p65 activation, cytokine expression, and fibrosis, and (iii) a three-fold reduction in apoptosis. Moreover, Tg-IκBα(S32A,S36A) HF hearts exhibited maintained expression of ER chaperones and CHOP when compared with sham. In cardiomyocytes, NF-κB activation was required for ER stress-mediated apoptosis, whereas abrogation of myocyte NF-κB shifted the ER stress response to one of adaptation and survival. persistent myocyte NF-κB p65 activation in HF exacerbates cardiac remodelling by imparting pro-inflammatory, pro-fibrotic, and pro-apoptotic effects. p65 modulation of cell death in HF may occur in part from NF-κB-mediated transformation of the ER stress response from one of adaptation to one of apoptosis.

          Related collections

          Author and article information

          Comments

          Comment on this article