29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The helicity-orbital coupling is an intriguing feature of magnetic skyrmions in frustrated magnets. Here we explore the skyrmion dynamics in a frustrated magnet based on the J 1- J 2- J 3 classical Heisenberg model explicitly by including the dipole-dipole interaction. The skyrmion energy acquires a helicity dependence due to the dipole-dipole interaction, resulting in the current-induced translational motion with a fixed helicity. The lowest-energy states are the degenerate Bloch-type states, which can be used for building the binary memory. By increasing the driving current, the helicity locking-unlocking transition occurs, where the translational motion changes to the rotational motion. Furthermore, we demonstrate that two skyrmions can spontaneously form a bound state. The separation of the bound state forced by a driving current is also studied. In addition, we show the annihilation of a pair of skyrmion and antiskyrmion. Our results reveal the distinctive frustrated skyrmions may enable viable applications in topological magnetism.

          Abstract

          Exploring the helicity-orbital coupling induced skyrmion properties is essential for the spintronic applications. Here the authors report the current controlled skyrmions and antiskyrmions dynamics with locking-unlocking helicity in frustrated magnets by including the dipole-dipole interaction in their model.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Real-space observation of a two-dimensional skyrmion crystal.

          Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures.

            Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Skyrmion Lattice in a Chiral Magnet

              Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
                Bookmark

                Author and article information

                Contributors
                zhouyan@cuhk.edu.cn
                ezawa@ap.t.u-tokyo.ac.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                23 November 2017
                23 November 2017
                2017
                : 8
                : 1717
                Affiliations
                [1 ]School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 China
                [2 ]ISNI 0000 0001 1507 4692, GRID grid.263518.b, Department of Electrical and Computer Engineering, , Shinshu University, ; 4-17-1 Wakasato, Nagano, 380-8553 Japan
                [3 ]ISNI 0000 0001 0472 9649, GRID grid.263488.3, SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, , Shenzhen University, ; Shenzhen, 518060 China
                [4 ]ISNI 0000 0001 2151 536X, GRID grid.26999.3d, Department of Applied Physics, , The University of Tokyo, ; 7-3-1 Hongo, Tokyo, 113-8656 Japan
                Author information
                http://orcid.org/0000-0001-9656-9696
                http://orcid.org/0000-0002-1009-3074
                http://orcid.org/0000-0002-3185-5680
                http://orcid.org/0000-0002-3629-5643
                Article
                1785
                10.1038/s41467-017-01785-w
                5700181
                5cfea6e6-f459-4d05-b056-1a56a8392f77
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 March 2017
                : 13 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article