10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-203a-3p regulates TGF-β1-induced epithelial–mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1

      research-article
      ,
      Bioscience Reports
      Portland Press Ltd.
      asthma, EMT, miR-203a-3p, SIX1, Smad3, TGF-β1

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asthma is a common chronic airway disease with increasing prevalence. MicroRNAs act as vital regulators in cell progressions and have been identified to play crucial roles in asthma. The objective of the present study is to clarify the molecular mechanism of miR-203a-3p in the development of asthma. The expression of miR-203a-3p and Sine oculis homeobox homolog 1 (SIX1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SIX1, fibronectin, E-cadherin, vimentin, phosphorylated-drosophila mothers against decapentaplegic 3 (p-Smad3) and Smad3 were measured by Western blot. The interaction between miR-203a-3p and SIX1 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-203a-3p was down-regulated and SIX1 was up-regulated in asthma serums, respectively. Transforming growth factor-β1 (TGF-β1) treatment induced the reduction of miR-203a-3p and the enhancement of SIX1 in BEAS-2B and 16HBE cells in a time-dependent manner. Subsequently, functional experiments showed the promotion of epithelial–mesenchymal transition (EMT) induced by TGF-β1 treatment could be reversed by miR-203a-3p re-expression or SIX1 deletion in BEAS-2B and 16HBE cells. SIX1 was identified as a target of miR-203a-3p and negatively regulated by miR-203a-3p. Then rescue assay indicated that overexpressed miR-203a-3p ameliorated TGF-β1 induced EMT by regulating SIX1 in BEAS-2B and 16HBE cells. Moreover, miR-203a-3p/SIX1 axis regulated TGF-β1 mediated EMT process in bronchial epithelial cells through phosphorylating Smad3. These results demonstrated that MiR-203a-3p modulated TGF-β1-induced EMT in asthma by regulating Smad3 pathway through targeting SIX1.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Non-Smad Signaling Pathways of the TGF-β Family.

          Ying Zhang (2017)
          Transforming growth factor β (TGF-β) and structurally related factors use several intracellular signaling pathways in addition to Smad signaling to regulate a wide array of cellular functions. These non-Smad signaling pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. This review summarizes the current knowledge of the mechanisms by which non-Smad signaling pathways are directly activated in response to ligand binding, how activation of these pathways impinges on Smads and non-Smad targets, and how final cellular responses are affected in response to these noncanonical signaling modes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial-mesenchymal transition in the pathophysiology of airway remodelling in asthma.

            We currently understand little about the mechanisms that lead to airway remodeling in asthma. The origin of the mesenchymal cells that contribute to fibrosis of the airway is poorly understood. However, emerging evidence suggests that the airway epithelium could contribute to airway remodeling through the process of epithelial-mesenchymal transition (EMT) following environmental challenge. In this review, we will discuss the mechanistic features of EMT and highlight recent descriptions of EMT in the airway to further define the role of the airway epithelium in the pathogenesis of asthma. Growth factors, inflammatory mediators, and matricellular proteins expressed following exposure to environmental insults are known to induce downregulation of epithelial cell-cell adhesions and promote mesenchymal gene expression programs both in vitro and in vivo. These results demonstrate that the plastic and dynamic airway epithelium may contribute to airway remodeling via EMT in asthma. It is becoming increasingly clear that the airway epithelium orchestrates inflammatory and remodeling responses of the airway. Understanding the regulatory mechanisms involved in epithelial plasticity will be crucial to determine effective therapies to halt the progression of airway remodeling in asthma.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma

                Bookmark

                Author and article information

                Contributors
                Journal
                Biosci Rep
                Biosci. Rep
                bsr
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                28 February 2020
                28 February 2020
                : 40
                : 2
                : BSR20192645
                Affiliations
                Department of Emergency Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, China
                Author notes
                Correspondence: Qi Fan ( piganbu196710@ 123456126.com )
                [*]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-5130-9321
                Article
                BSR20192645
                10.1042/BSR20192645
                7048677
                32065213
                5cff1974-e87a-4724-879e-30b9a90fb8a7
                © 2020 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 30 July 2019
                : 14 January 2020
                : 10 February 2020
                : 17 February 2020
                Page count
                Pages: 13
                Categories
                Biotechnology
                Research Articles

                Life sciences
                asthma,emt,mir-203a-3p,six1,smad3,tgf-β1
                Life sciences
                asthma, emt, mir-203a-3p, six1, smad3, tgf-β1

                Comments

                Comment on this article