8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multinucleotide mutations cause false inferences of lineage-specific positive selection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phylogenetic tests of adaptive evolution, such as the widely used branch-site test, assume that nucleotide substitutions occur singly and independently. But recent research has shown that errors at adjacent sites often occur during DNA replication, and the resulting multinucleotide mutations (MNMs) are overwhelmingly likely to be nonsynonymous. We evaluated whether the branch-site test (BST) might misinterpret sequence patterns produced by MNMs as false support for positive selection. We analyzed two genome-scale datasets– one from mammals and one from flies – and found that codons with multiple differences account for virtually all the support for lineage-specific positive selection in the BST. Simulations under conditions derived from these alignments but without positive selection show that realistic rates of MNMs cause a strong and systematic bias towards false inferences of selection. This bias is sufficient under empirically derived conditions to produce false positive inferences as often as the branch-site test infers positive selection from the empirical data. Although some genes with BST-positive results may have evolved adaptively, the test cannot distinguish sequence patterns produced by authentic positive selection from those caused by neutral fixation of MNMs. Many published inferences of adaptive evolution using this technique may therefore be artifacts of model violation caused by unincorporated neutral mutational processes. We introduce a model that incorporates MNMs and may help to ameliorate this bias.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of genes and genomes on the Drosophila phylogeny.

          Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A codon-based model of nucleotide substitution for protein-coding DNA sequences.

            (1994)
            A codon-based model for the evolution of protein-coding DNA sequences is presented for use in phylogenetic estimation. A Markov process is used to describe substitutions between codons. Transition/transversion rate bias and codon usage bias are allowed in the model, and selective restraints at the protein level are accommodated using physicochemical distances between the amino acids coded for by the codons. Analyses of two data sets suggest that the new codon-based model can provide a better fit to data than can nucleotide-based models and can produce more reliable estimates of certain biologically important measures such as the transition/transversion rate ratio and the synonymous/nonsynonymous substitution rate ratio.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome.

              A model of DNA sequence evolution applicable to coding regions is presented. This represents the first evolutionary model that accounts for dependencies among nucleotides within a codon. The model uses the codon, as opposed to the nucleotide, as the unit of evolution, and is parameterized in terms of synonymous and nonsynonymous nucleotide substitution rates. One of the model's advantages over those used in methods for estimating synonymous and nonsynonymous substitution rates is that it completely corrects for multiple hits at a codon, rather than taking a parsimony approach and considering only pathways of minimum change between homologous codons. Likelihood-ratio versions of the relative-rate test are constructed and applied to data from the complete chloroplast DNA sequences of Oryza sativa, Nicotiana tabacum, and Marchantia polymorpha. Results of these tests confirm previous findings that substitution rates in the chloroplast genome are subject to both lineage-specific and locus-specific effects. Additionally, the new tests suggest tha the rate heterogeneity is due primarily to differences in nonsynonymous substitution rates. Simulations help confirm previous suggestions that silent sites are saturated, leaving no evidence of heterogeneity in synonymous substitution rates.
                Bookmark

                Author and article information

                Journal
                101698577
                46074
                Nat Ecol Evol
                Nat Ecol Evol
                Nature ecology & evolution
                2397-334X
                1 August 2018
                02 July 2018
                August 2018
                02 January 2019
                : 2
                : 8
                : 1280-1288
                Affiliations
                [(1) ]Department of Human Genetics, University of Chicago, Chicago IL 60637, USA
                [(2) ]Department of Biology and Department of Computer Science, Indiana University, Bloomington IN 47405, USA
                [(3) ]Department of Ecology & Evolution, University of Chicago, Chicago IL 60637, USA
                Author notes
                [* ]Correspondence:Joseph Thornton, joet1@ 123456uchicago.edu
                Article
                NIHMS969308
                10.1038/s41559-018-0584-5
                6093625
                29967485
                5d140d79-09ed-408e-b9b7-0eddfbc43073

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                adaptation,adaptive evolution,branch-site test,codon models,transversions

                Comments

                Comment on this article