14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ophiopogon japonicas (L.f) Ker-Gawl has been used as a traditional Chinese medicine to cure acute and chronic inflammation and cardiovascular diseases including thrombotic diseases for thousands of years. Previous phytochemical studies showed that O. japonicus contained compounds with anti-inflammatory activity. The aim of this study was to identify and isolate compounds with anti-inflammatory activity from the rhizome of O. japonicas.

          Methods

          Compounds were isolated by various column chromatography and their structures were identified in terms of nuclear magnetic resonance spectrum (NMR) and mass spectrum (MS). To measure the anti-inflammatory effects of thirteen compounds in LPS-induced RAW 264.7 macrophage cells, we used the following methods: cell viability assay, nitric oxide assay, enzyme-linked immunosorbent assay, quantitative real-time PCR analysis and western blotting analysis.

          Results

          One new and twelve known compounds (mainly homoisoflavonoids) were extracted from O. japonicas, in which 4′- O-Demethylophiopogonanone E (10) was considered as a new compound, additionally, compounds 4- O-(2-Hydroxy-1- hydroxymethylethyl)-dihydroconiferyl alcohol (2) and 5,7-dihydroxy-6-methyl-3-(2′, 4′-dihydroxybenzyl) chroman-4-one (12) were isolated from the rhizome of O. japonicas for the first time. The isolated compounds Oleic acid (3), Palmitic acid (4), desmethylisoophiopogonone B [5,7-dihydroxy-3-(4′-hydroxybenzyl)-8- methyl- chromone] (5), 5,7-dihydroxy-6-methyl-3-(4′-hydroxybenzyl) chromone (7) and 10 significantly suppressed the production of NO in LPS-induced RAW 264.7 cells. Especially compound 10 showed the strongest effect against the production of the pro-inflammatory cytokine IL-1β and IL-6 with the IC 50 value of 32.5 ± 3.5 μg/mL and 13.4 ± 2.3 μg/mL, respectively. Further analysis elucidated that the anti-inflammatory activity of compound 10 might be exerted through inhibiting the phosphorylation of ERK1/2 and JNK in MAPK signaling pathways to decrease NO and pro-inflammatory cytokines production.

          Conclusions

          Our results indicated that 4′- O-Demethylophiopogonanone E can be considered as a potential source of therapeutic medicine for inflammatory diseases.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits.

          Excessive inflammation is becoming accepted as a critical factor in many human diseases, including inflammatory and autoimmune disorders, neurodegenerative conditions, infection, cardiovascular diseases, and cancer. Cerebral ischemia and neurodegenerative diseases are accompanied by a marked inflammatory reaction that is initiated by expression of cytokines, adhesion molecules, and other inflammatory mediators, including prostanoids and nitric oxide. This review discusses recent advances regarding the detrimental effects of inflammation, the regulation of inflammatory signalling pathways in various diseases, and the potential molecular targets for anti-inflammatory therapy. Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine protein kinases that mediate fundamental biological processes and cellular responses to external stress signals. Increased activity of MAPK, in particular p38 MAPK, and their involvement in the regulation of the synthesis of inflammation mediators at the level of transcription and translation, make them potential targets for anti-inflammatory therapeutics. Inhibitors targeting p38 MAPK and JNK pathways have been developed, and preclinical data suggest that they exhibit anti-inflammatory activity. This review discusses how these novel drugs modulate the activity of the p38 MAPK and JNK signalling cascades, and exhibit anti-inflammatory effects in preclinical disease models, primarily through the inhibition of the expression of inflammatory mediators. Use of MAPK inhibitors emerges as an attractive strategy because they are capable of reducing both the synthesis of pro-inflammatory cytokines and their signalling. Moreover, many of these drugs are small molecules that can be administered orally, and initial results of clinical trials have shown clinical benefits in patients with chronic inflammatory disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities.

            A novel polysaccharide, here named DP1, was isolated from the fruiting body of Dictyophora indusiata using a water extraction method. Structure characterization revealed that DP1 had an average molecular weight of 1132 kDa and consisted of glucose (56.2%), galactose (14.1%), and mannose (29.7%). The main linkage type of DP1 were proven to be (1 → 3)-linked α-l-Man, (1 → 2,6)-linked α-d-Glc, (1 → 6)-linked β-d-Glc, (1 → 6)-linked β-d-Gal, and (1 → 6)-linked β-d-Man by periodate oxidation-Smith degradation and nuclear magnetic resonance analysis. The immunostimulating assay indicated that DP1 could significantly promote macrophage NO, TNF-α, and IL-6 secretion in murine RAW 264.7 cells involving complement receptor 3 (CR3). The immune activities of DP1 were quite stable under thermal processing (100, 121, and 145 °C). Besides, DP1 retained stability after acidic/alkline treatment (pH 4.0-10.0), which enabled it to be an ideal complementary medicine or functional food for therapeutics of hypoimmunity and immunodeficiency diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation.

              1. Sauchinone, a lignan isolated from Saururus chinensis (Saururaceae), is a diastereomeric lignan with cytoprotective and antioxidant activities in cultured hepatocytes. The effects of sauchinone on the inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase 2 (COX-2) gene expression and on the activation of transcription factors, nuclear factor-kappaB (NF-kappaB), CCAAT/enhancer-binding protein (C/EBP), activator protein-1 (AP-1) and cAMP-response element-binding protein (CREB) were determined in Raw264.7 cells as part of the studies on its anti-inflammatory effects. 2. Expression of the iNOS, TNF-alpha and COX-2 genes was assessed by Northern and Western blot analyses. NO production was monitored by chemiluminescence detection using a NO analyzer. To identify the transcriptional factors affected by sauchinone, the extents of NF-kappaB, C/EBP, AP-1 and CREB activation were measured. Activation of the transcription factors was monitored by gel mobility shift assay, whereas p65 and I-kappaBalpha were analyzed by immunocytochemical and immunoblot analyses. 3. Sauchinone inhibited the induction of iNOS, TNF-alpha and COX-2 by lipopolysaccharide (LPS) (IC50
                Bookmark

                Author and article information

                Contributors
                zhuwei9201@163.com
                linli0921@21cn.com
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                5 January 2017
                5 January 2017
                2017
                : 17
                : 7
                Affiliations
                [1 ]The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405 Guangdong China
                [2 ]Guangdong Food and Drug Vocational College, Guangzhou, 510520 Guangdong China
                [3 ]Artepharm Company Limited, Guangzhou, 510410 Guangdong China
                Author information
                http://orcid.org/0000-0002-8200-9230
                Article
                1539
                10.1186/s12906-016-1539-5
                5217338
                28056939
                5d4d11bb-b6d1-4cea-a6c9-d482c6e3760d
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 April 2016
                : 12 December 2016
                Funding
                Funded by: State Administration of Traditional Chinese Medicine of the People’s Republic of China project
                Award ID: JDZX2015205
                Award Recipient :
                Funded by: Scientific and Technological Project of Guangdong Province, China
                Award ID: 2012B031800176
                Award Recipient :
                Funded by: Science and Technology Planning Project of Guangzhou
                Award ID: 201300000140
                Award Recipient :
                Funded by: YangFan Innovative and Entrepreneurial Research Team Project
                Award ID: 2014YT02S008
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                Complementary & Alternative medicine
                ophiopogon japonicus,homoisoflavonoids,anti-inflammatory,macrophages,mapks

                Comments

                Comment on this article