8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Plasticity and primary motor cortex.

          One fundamental function of primary motor cortex (MI) is to control voluntary movements. Recent evidence suggests that this role emerges from distributed networks rather than discrete representations and that in adult mammals these networks are capable of modification. Neuronal recordings and activation patterns revealed with neuroimaging methods have shown considerable plasticity of MI representations and cell properties following pathological or traumatic changes and in relation to everyday experience, including motor-skill learning and cognitive motor actions. The intrinsic horizontal neuronal connections in MI are a strong candidate substrate for map reorganization: They interconnect large regions of MI, they show activity-dependent plasticity, and they modify in association with skill learning. These findings suggest that MI cortex is not simply a static motor control structure. It also contains a dynamic substrate that participates in motor learning and possibly in cognitive events as well.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional reorganization of the rat motor cortex following motor skill learning.

            Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80: 3321-3325, 1998. Adult rats were allocated to either a skilled or unskilled reaching condition (SRC and URC, respectively). SRC animals were trained for 10 days on a skilled reaching task while URC animals were trained on a simple bar pressing task. After training, microelectrode stimulation was used to derive high resolution maps of the forelimb and hindlimb representations within the motor cortex. In comparison with URC animals, SRC animals exhibited a significant increase in mean area of the wrist and digit representations but a decrease in elbow/shoulder representation within the caudal forelimb area. No between-group differences in areal representation were found in either the hindlimb or rostral forelimb areas. These results demonstrate that motor skill learning is associated with a reorganization of movement representations within the rodent motor cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning.

              Extensive motor skill training induces reorganization of movement representations and synaptogenesis within adult motor cortex. Motor skill does not, however, develop uniformly across training sessions. It is characterized by an initial fast phase, followed by a later slow phase of learning. How cortical plasticity emerges during these phases is unknown. Here, we examine motor map topography and synapse number within rat motor cortex during the early and late phases of motor learning. Adult rats were placed in either a skilled or unskilled reaching condition (SRC and URC, respectively) for 3, 7, or 10 d. Intracortical microstimulation of layer V was used to determine the topography of forelimb movement representations within caudal forelimb area of motor cortex contralateral to the trained paw. Quantitative electron microscopy was used to measure the number of synapses per neuron within layer V. SRC animals showed significant increases in reaching accuracy after 3, 7, and 10 d of training. In comparison with URC animals, SRC animals had significantly larger distal forelimb representations after 10 d of training only. Furthermore, SRC animals had significantly more synapses per neuron than URC animals after 7 and 10 d of training. These results show that both motor map reorganization and synapse formation occur during the late phase of skill learning. Furthermore, synaptogenesis precedes map reorganization. We propose that motor map reorganization and synapse formation do not contribute to the initial acquisition of motor skills but represent the consolidation of motor skill that occurs during late stages of training.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Physiology
                Journal of Applied Physiology
                American Physiological Society
                8750-7587
                1522-1601
                June 2017
                June 2017
                : 122
                : 6
                : 1494-1503
                Affiliations
                [1 ]Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
                Article
                10.1152/japplphysiol.01130.2016
                28336541
                5d4eb8e7-9c8e-4c41-9b17-205194af8f57
                © 2017
                History

                Comments

                Comment on this article