+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Applying Systems Engineering Reduces Radiology Transport Cycle Times in the Emergency Department

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Emergency department (ED) crowding is widespread, and can result in care delays, medical errors, increased costs, and decreased patient satisfaction. Simultaneously, while capacity constraints on EDs are worsening, contributing factors such as patient volume and inpatient bed capacity are often outside the influence of ED administrators. Therefore, systems engineering approaches that improve throughput and reduce waste may hold the most readily available gains. Decreasing radiology turnaround times improves ED patient throughput and decreases patient waiting time. We sought to investigate the impact of systems engineering science targeting ED radiology transport delays and determine the most effective techniques.


          This prospective, before-and-after analysis of radiology process flow improvements in an academic hospital ED was exempt from institutional review board review as a quality improvement initiative. We hypothesized that reorganization of radiology transport would improve radiology cycle time and reduce waste. The intervention included systems engineering science-based reorganization of ED radiology transport processes, largely using Lean methodologies, and adding no resources. The primary outcome was average transport time between study order and complete time. All patients presenting between 8/2013–3/2016 and requiring plain film imaging were included. We analyzed electronic medical record data using Microsoft Excel and SAS version 9.4, and we used a two-sample t-test to compare data from the pre- and post-intervention periods.


          Following the intervention, average transport time decreased significantly and sustainably. Average radiology transport time was 28.7 ± 4.2 minutes during the three months pre-intervention. It was reduced by 15% in the first three months (4.4 minutes [95% confidence interval [CI] 1.5–7.3]; to 24.3 ± 3.3 min, P=0.021), 19% in the following six months (5.4 minutes, 95% CI [2.7–8.2]; to 23.3 ± 3.5 min, P=0.003), and 26% one year following the intervention (7.4 minutes, 95% CI [4.8–9.9]; to 21.3 ± 3.1 min, P=0.0001). This result was achieved without any additional resources, and demonstrated a continual trend towards improvement. This innovation demonstrates the value of systems engineering science to increase efficiency in ED radiology processes.


          In this study, reorganization of the ED radiology transport process using systems engineering science significantly increased process efficiency without additional resource use.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic review of emergency department crowding: causes, effects, and solutions.

          Emergency department (ED) crowding represents an international crisis that may affect the quality and access of health care. We conducted a comprehensive PubMed search to identify articles that (1) studied causes, effects, or solutions of ED crowding; (2) described data collection and analysis methodology; (3) occurred in a general ED setting; and (4) focused on everyday crowding. Two independent reviewers identified the relevant articles by consensus. We applied a 5-level quality assessment tool to grade the methodology of each study. From 4,271 abstracts and 188 full-text articles, the reviewers identified 93 articles meeting the inclusion criteria. A total of 33 articles studied causes, 27 articles studied effects, and 40 articles studied solutions of ED crowding. Commonly studied causes of crowding included nonurgent visits, "frequent-flyer" patients, influenza season, inadequate staffing, inpatient boarding, and hospital bed shortages. Commonly studied effects of crowding included patient mortality, transport delays, treatment delays, ambulance diversion, patient elopement, and financial effect. Commonly studied solutions of crowding included additional personnel, observation units, hospital bed access, nonurgent referrals, ambulance diversion, destination control, crowding measures, and queuing theory. The results illustrated the complex, multifaceted characteristics of the ED crowding problem. Additional high-quality studies may provide valuable contributions toward better understanding and alleviating the daily crisis. This structured overview of the literature may help to identify future directions for the crowding research agenda.
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of emergency department crowding on clinically oriented outcomes.

            An Institute of Medicine (IOM) report defines six domains of quality of care: safety, patient-centeredness, timeliness, efficiency, effectiveness, and equity. The effect of emergency department (ED) crowding on these domains of quality has not been comprehensively evaluated. The objective was to review the medical literature addressing the effects of ED crowding on clinically oriented outcomes (COOs). We reviewed the English-language literature for the years 1989-2007 for case series, cohort studies, and clinical trials addressing crowding's effects on COOs. Keywords searched included "ED crowding,"ED overcrowding,"mortality,"time to treatment,"patient satisfaction,"quality of care," and others. A total of 369 articles were identified, of which 41 were kept for inclusion. Study quality was modest; most articles reflected observational work performed at a single institution. There were no randomized controlled trials. ED crowding is associated with an increased risk of in-hospital mortality, longer times to treatment for patients with pneumonia or acute pain, and a higher probability of leaving the ED against medical advice or without being seen. Crowding is not associated with delays in reperfusion for patients with ST-elevation myocardial infarction. Insufficient data were available to draw conclusions on crowding's effects on patient satisfaction and other quality endpoints. A growing body of data suggests that ED crowding is associated both with objective clinical endpoints, such as mortality, as well as clinically important processes of care, such as time to treatment for patients with time-sensitive conditions such as pneumonia. At least two domains of quality of care, safety and timeliness, are compromised by ED crowding.
              • Record: found
              • Abstract: found
              • Article: not found

              A conceptual model of emergency department crowding.

              Emergency department (ED) crowding has become a major barrier to receiving timely emergency care in the United States. Despite widespread recognition of the problem, the research and policy agendas needed to understand and address ED crowding are just beginning to unfold. We present a conceptual model of ED crowding to help researchers, administrators, and policymakers understand its causes and develop potential solutions. The conceptual model partitions ED crowding into 3 interdependent components: input, throughput, and output. These components exist within an acute care system that is characterized by the delivery of unscheduled care. The goal of the conceptual model is to provide a practical framework on which an organized research, policy, and operations management agenda can be based to alleviate ED crowding.

                Author and article information

                West J Emerg Med
                West J Emerg Med
                Western Journal of Emergency Medicine
                Department of Emergency Medicine, University of California, Irvine School of Medicine
                April 2017
                21 February 2017
                : 18
                : 3
                : 410-418
                [* ]Massachusetts General Hospital, Department of Emergency Medicine, Boston, Massachusetts
                []Massachusetts General Hospital, Department of Radiology, Boston, Massachusetts
                Author notes
                Address for Correspondence: Benjamin A. White, MD, Massachusetts General Hospital, Department of Emergency Medicine, Zero Emerson Place, Suite 3B, Boston, MA 02114. Email: bwhite3@ .
                Copyright: © 2017 White et al.

                This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) License. See:

                Emergency Department Operations
                Original Research

                Emergency medicine & Trauma


                Comment on this article