10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blocking TGF-β Signaling To Enhance The Efficacy Of Immune Checkpoint Inhibitor

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During malignant transformation, a growing body of mutations accumulate in cancer cells which not only drive cancer progression but also endow cancer cells with high immunogenicity. However, because one or multiple steps in cancer-immunity cycle are impaired, anti-cancer immune response is too weak to effectively clear cancer cells. Therefore, how to restore robust immune response to malignant cells is a hot research topic in cancer therapeutics field. In the last decade, based on the deeper understanding of cancer immunity, great signs of progress have been made in cancer immunotherapies especially immune checkpoint inhibitors (ICIs). ICIs could block negative immune co-stimulatory pathways and reactivate tumor-infiltrating lymphocytes (TILs) from exhausted status. ICIs exhibit potent anti-cancer effect and have been approved for the treatment of numerous cancer types. Parallel with durable and effective tumor control, the actual response rate of ICIs is unsatisfactory. Although a subset of patients benefit from ICIs treatment, a large proportion of patients show primary or acquired resistance. Previously intensive studies indicated that the efficacy of ICIs was determined by a series of factors including tumor mutation burden, programmed death ligand-1 (PD-L1) expression, and TILs status. Recently, it was reported that transforming growth factor-beta (TGF-β) signaling pathway participated in cancer immune escape and ICI resistance. Concurrent TGF-β blockade might be a feasible strategy to enhance the efficacy of immunotherapy and relieve ICI resistance. In this mini-review, we summarized the latest understanding of TGF-β signaling pathway and cancer immunity. Besides, we highlighted the synergistic effect of TGF-β blockade and ICIs.

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression.

          Transforming growth factor beta (TGF-beta) plays an important role in tumor initiation and progression, functioning as both a suppressor and a promoter. The mechanisms underlying this dual role of TGF-beta remain unclear. TGF-beta exerts systemic immune suppression and inhibits host immunosurveillance. Neutralizing TGF-beta enhances CD8+ T-cell- and NK-cell-mediated anti-tumor immune responses. It also increases neutrophil-attracting chemokines resulting in recruitment and activation of neutrophils with an antitumor phenotype. In addition to its systemic effects, TGF-beta regulates infiltration of inflammatory/immune cells and cancer-associated fibroblasts in the tumor microenvironment causing direct changes in tumor cells. Understanding TGF-beta regulation at the interface of tumor and host immunity should provide insights into developing effective TGF-beta antagonists and biomarkers for patient selection and efficacy of TGF-beta antagonist treatment. Published by Elsevier Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure

            The extracellular matrix (ECM) is a key determinant of cancer progression and prognosis. Here we report findings from one of the largest pan-cancer analyses of ECM gene dysregulation in cancer. We define a distinct set of ECM genes upregulated in cancer (C-ECM) and linked to worse prognosis. We found that the C-ECM transcriptional programme dysregulation is correlated with the activation of TGF-β signalling in cancer-associated fibroblasts and is linked to immunosuppression in otherwise immunologically active tumours. Cancers that activate this programme carry distinct genomic profiles, such as BRAF, SMAD4 and TP53 mutations and MYC amplification. Finally, we show that this signature is a predictor of the failure of PD-1 blockade and outperforms previously-proposed biomarkers. Thus, our findings identify a distinct transcriptional pattern of ECM genes in operation across cancers that may be potentially targeted, pending preclinical validation, using TGF-β blockade to enhance responses to immune-checkpoint blockade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β

              Antibodies targeting immune checkpoints are emerging as potent and viable cancer therapies, but not all patients respond to these as single agents. Concurrently targeting additional immunosuppressive pathways is a promising approach to enhance immune checkpoint blockade, and bifunctional molecules designed to target two pathways simultaneously may provide a strategic advantage over the combination of two single agents. M7824 (MSB0011359C) is a bifunctional fusion protein composed of a monoclonal antibody against programmed death ligand 1 (PD-L1) fused to the extracellular domain of human transforming growth factor–β (TGF-β) receptor II, which functions as a "trap" for all three TGF-β isoforms. We demonstrate that M7824 efficiently, specifically, and simultaneously binds PD-L1 and TGF-β. In syngeneic mouse models, M7824 suppressed tumor growth and metastasis more effectively than treatment with either an anti–PD-L1 antibody or TGF-β trap alone; furthermore, M7824 extended survival and conferred long-term protective antitumor immunity. Mechanistically, the dual anti-immunosuppressive function of M7824 resulted in activation of both the innate and adaptive immune systems, which contributed to M7824’s antitumor activity. Finally, M7824 was an effective combination partner for radiotherapy or chemotherapy in mouse models. Collectively, our preclinical data demonstrate that simultaneous blockade of the PD-L1 and TGF-β pathways by M7824 elicits potent and superior antitumor activity relative to monotherapies.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OTT
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                11 November 2019
                2019
                : 12
                : 9527-9538
                Affiliations
                [1 ]Medical School, Pingdingshan University , Pingdingshan, Henan, People’s Republic of China
                [2 ]Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, People’s Republic of China
                [3 ]Department of Oncology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, People’s Republic of China
                Author notes
                Correspondence: Kongming Wu; Qian Chu Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan430030, People’s Republic of China Email kmwu@tjh.tjmu.edu.cn; qianchu@tjh.tjmu.edu.cn
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0003-2499-1032
                Article
                224013
                10.2147/OTT.S224013
                6857659
                31807028
                5dd799b4-49bf-4754-a3c5-404d6645b7a8
                © 2019 Bai et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 22 July 2019
                : 25 October 2019
                Page count
                Figures: 2, Tables: 1, References: 112, Pages: 12
                Categories
                Review

                Oncology & Radiotherapy
                immunotherapy,immune checkpoint inhibitor,pd-1,pd-l1,tgf-β,tumor immune microenvironment,tumor infiltrating lymphocyte

                Comments

                Comment on this article