30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      On Maxwell's displacement current for energy and sensors: the origin of nanogenerators

      Materials Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors

          A review on the principles, novel applications and perspectives of triboelectric nanogenerators as power sources and as self-powered sensors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives.

            Zhong Wang (2014)
            Triboelectrification is one of the most common effects in our daily life, but it is usually taken as a negative effect with very limited positive applications. Here, we invented a triboelectric nanogenerator (TENG) based on organic materials that is used to convert mechanical energy into electricity. The TENG is based on the conjunction of triboelectrification and electrostatic induction, and it utilizes the most common materials available in our daily life, such as papers, fabrics, PTFE, PDMS, Al, PVC etc. In this short review, we first introduce the four most fundamental modes of TENG, based on which a range of applications have been demonstrated. The area power density reaches 1200 W m(-2), volume density reaches 490 kW m(-3), and an energy conversion efficiency of ∼50-85% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available in our daily life, such as human motion, walking, vibration, mechanical triggering, rotation energy, wind, a moving automobile, flowing water, rain drops, tide and ocean waves. Therefore, it is a new paradigm for energy harvesting. Furthermore, TENG can be a sensor that directly converts a mechanical triggering into a self-generated electric signal for detection of motion, vibration, mechanical stimuli, physical touching, and biological movement. After a summary of TENG for micro-scale energy harvesting, mega-scale energy harvesting, and self-powered systems, we will present a set of questions that need to be discussed and explored for applications of the TENG. Lastly, since the energy conversion efficiencies for each mode can be different although the materials are the same, depending on the triggering conditions and design geometry. But one common factor that determines the performance of all the TENGs is the charge density on the two surfaces, the saturation value of which may independent of the triggering configurations of the TENG. Therefore, the triboelectric charge density or the relative charge density in reference to a standard material (such as polytetrafluoroethylene (PTFE)) can be taken as a measuring matrix for characterizing the performance of the material for the TENG.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-powered nanowire devices.

              The harvesting of mechanical energy from ambient sources could power electrical devices without the need for batteries. However, although the efficiency and durability of harvesting materials such as piezoelectric nanowires have steadily improved, the voltage and power produced by a single nanowire are insufficient for real devices. The integration of large numbers of nanowire energy harvesters into a single power source is therefore necessary, requiring alignment of the nanowires as well as synchronization of their charging and discharging processes. Here, we demonstrate the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices. A lateral integration of 700 rows of ZnO nanowires produces a peak voltage of 1.26 V at a low strain of 0.19%, which is potentially sufficient to recharge an AA battery. In a separate device, a vertical integration of three layers of ZnO nanowire arrays produces a peak power density of 2.7 mW cm(-3). We use the vertically integrated nanogenerator to power a nanowire pH sensor and a nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowires.
                Bookmark

                Author and article information

                Journal
                Materials Today
                Materials Today
                Elsevier BV
                13697021
                March 2017
                March 2017
                : 20
                : 2
                : 74-82
                Article
                10.1016/j.mattod.2016.12.001
                5deb397f-0f4c-4e5f-9796-9df732135156
                © 2017
                History

                Comments

                Comment on this article