3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stink bean ( Parkia speciosa) empty pod: a potent natural antidiabetic agent for the prevention of pancreatic and hepatorenal dysfunction in high fat diet/streptozotocin-induced type 2 diabetes in rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress and diabetic complications.

          Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogenesis of complications: polyol pathway flux, increased formation of AGEs (advanced glycation end products), increased expression of the receptor for AGEs and its activating ligands, activation of protein kinase C isoforms, and overactivity of the hexosamine pathway. It also directly inactivates 2 critical antiatherosclerotic enzymes, endothelial nitric oxide synthase and prostacyclin synthase. Through these pathways, increased intracellular reactive oxygen species (ROS) cause defective angiogenesis in response to ischemia, activate a number of proinflammatory pathways, and cause long-lasting epigenetic changes that drive persistent expression of proinflammatory genes after glycemia is normalized ("hyperglycemic memory"). Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS. Overexpression of superoxide dismutase in transgenic diabetic mice prevents diabetic retinopathy, nephropathy, and cardiomyopathy. The aim of this review is to highlight advances in understanding the role of metabolite-generated ROS in the development of diabetic complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type 2 diabetes.

            415 million people live with diabetes worldwide, and an estimated 193 million people have undiagnosed diabetes. Type 2 diabetes accounts for more than 90% of patients with diabetes and leads to microvascular and macrovascular complications that cause profound psychological and physical distress to both patients and carers and put a huge burden on health-care systems. Despite increasing knowledge regarding risk factors for type 2 diabetes and evidence for successful prevention programmes, the incidence and prevalence of the disease continues to rise globally. Early detection through screening programmes and the availability of safe and effective therapies reduces morbidity and mortality by preventing or delaying complications. Increased understanding of specific diabetes phenotypes and genotypes might result in more specific and tailored management of patients with type 2 diabetes, as has been shown in patients with maturity onset diabetes of the young. In this Seminar, we describe recent developments in the diagnosis and management of type 2 diabetes, existing controversies, and future directions of care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mechanisms of alloxan- and streptozotocin-induced diabetes.

              S Lenzen (2008)
              Alloxan and streptozotocin are toxic glucose analogues that preferentially accumulate in pancreatic beta cells via the GLUT2 glucose transporter. In the presence of intracellular thiols, especially glutathione, alloxan generates reactive oxygen species (ROS) in a cyclic redox reaction with its reduction product, dialuric acid. Autoxidation of dialuric acid generates superoxide radicals, hydrogen peroxide and, in a final iron-catalysed reaction step, hydroxyl radicals. These hydroxyl radicals are ultimately responsible for the death of the beta cells, which have a particularly low antioxidative defence capacity, and the ensuing state of insulin-dependent 'alloxan diabetes'. As a thiol reagent, alloxan also selectively inhibits glucose-induced insulin secretion through its ability to inhibit the beta cell glucose sensor glucokinase. Following its uptake into the beta cells, streptozotocin is split into its glucose and methylnitrosourea moiety. Owing to its alkylating properties, the latter modifies biological macromolecules, fragments DNA and destroys the beta cells, causing a state of insulin-dependent diabetes. The targeting of mitochondrial DNA, thereby impairing the signalling function of beta cell mitochondrial metabolism, also explains how streptozotocin is able to inhibit glucose-induced insulin secretion.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Archives of Physiology and Biochemistry
                Archives of Physiology and Biochemistry
                Informa UK Limited
                1381-3455
                1744-4160
                January 31 2021
                : 1-7
                Affiliations
                [1 ]Department of Cardiovascular Medicine, Danyang Peoples Hospital of Jiangsu Province, Danyang, Jiangsu, China
                [2 ]Innoscience Research Sdn Bhd, Selangor, Malaysia
                [3 ]Department of Endocrinology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
                [4 ]Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, Thailand
                Article
                10.1080/13813455.2021.1876733
                33522287
                5df7425b-c6b1-4c46-b8b2-bd245b0c93a5
                © 2021
                History

                Comments

                Comment on this article