26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown.

          Results

          This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants.

          Conclusions

          Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.

          High-throughput gene expression analysis has become a frequent and powerful research tool in biology. At present, however, few software applications have been developed for biologists to query large microarray gene expression databases using a Web-browser interface. We present GENEVESTIGATOR, a database and Web-browser data mining interface for Affymetrix GeneChip data. Users can query the database to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs. Reversely, mining tools allow users to identify genes specifically expressed during selected stresses, growth stages, or in particular organs. Using GENEVESTIGATOR, the gene expression profiles of more than 22,000 Arabidopsis genes can be obtained, including those of 10,600 currently uncharacterized genes. The objective of this software application is to direct gene functional discovery and design of new experiments by providing plant biologists with contextual information on the expression of genes. The database and analysis toolbox is available as a community resource at https://www.genevestigator.ethz.ch.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling.

            In Arabidopsis, the flagellin-derived peptide flg22 elevates antibacterial resistance [1] and inhibits growth [2] upon perception via the leucine-rich repeat receptor-like kinase Flagellin-Sensitive 2 (FLS2) [3]. DELLA proteins are plant growth repressors whose degradation is promoted by the phytohormone gibberellin [4]. Here, we show that DELLA stabilization contributes to flg22-induced growth inhibition. In addition, we show that DELLAs promote susceptibility to virulent biotrophs and resistance to necrotrophs, partly by altering the relative strength of salicylic acid and jasmonic acid (JA) signaling. A quadruple-DELLA mutant (which lacks four out of the five Arabidopsis DELLA proteins [5]) was partially insensitive to gene induction by Methyl-Jasmonate (MeJA), whereas the constitutively active dominant DELLA mutant gai[6] was sensitized for JA-responsive gene induction, implicating DELLAs in JA-signaling and/or perception. Accordingly, the elevated resistance of gai to the necrotrophic fungus Alternaria brassicicola and susceptibility to the hemibiotroph Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000) was attenuated in the JA-insensitive coi1-16 mutant [7]. These findings suggest an explanation for why the necrotrophic fungus Gibberella fujikuroi, causal agent of the foolish-seedling disease of rice, makes gibberellin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.

              Bioactive gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. These GA-signaling repressors are nuclear localized and likely function as transcriptional regulators. Recent studies demonstrated that GA, upon binding to its receptor, derepresses its signaling pathway by binding directly to DELLA proteins and targeting them for rapid degradation via the ubiquitin-proteasome pathway. Therefore, elucidating the signaling events immediately downstream of DELLA is key to our understanding of how GA controls plant development. Two sets of microarray studies followed by quantitative RT-PCR analysis allowed us to identify 14 early GA-responsive genes that are also early DELLA-responsive in Arabidopsis thaliana seedlings. Chromatin immunoprecipitation provided evidence for in vivo association of DELLA with promoters of eight of these putative DELLA target genes. Expression of all 14 genes was downregulated by GA and upregulated by DELLA. Our study reveals that DELLA proteins play two important roles in GA signaling: (1) they help establish GA homeostasis by direct feedback regulation on the expression of GA biosynthetic and GA receptor genes, and (2) they promote the expression of downstream negative components that are putative transcription factors/regulators or ubiquitin E2/E3 enzymes. In addition, one of the putative DELLA targets, XERICO, promotes accumulation of abscisic acid (ABA) that antagonizes GA effects. Therefore, DELLA may restrict GA-promoted processes by modulating both GA and ABA pathways.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2014
                3 August 2014
                : 14
                : 210
                Affiliations
                [1 ]Instituto de Biotecnología, CICVyA-INTA, Hurlingham, 1686, Buenos Aires, Argentina
                [2 ]Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
                Article
                s12870-014-0210-x
                10.1186/s12870-014-0210-x
                4422269
                25084837
                5df8cc9c-e04f-48d7-a683-2d280894220b
                Copyright © 2014 Rodriguez et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 March 2014
                : 24 July 2014
                Categories
                Research Article

                Plant science & Botany
                tmv-cg,coat protein,della proteins,sa signaling,defense response
                Plant science & Botany
                tmv-cg, coat protein, della proteins, sa signaling, defense response

                Comments

                Comment on this article