Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Bartter’s and Gitelman’s Syndromes: From Gene to Clinic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bartter’s and Gitelman’s syndromes are characterized by hypokalemia, normal to low blood pressure and hypochloremic metabolic alkalosis. Recently, investigators have been able to demonstrate mutations of six genes encoding several renal tubular transporters and ion channels that can be held responsible for Bartter’s and Gitelman’s syndromes. Neonatal Bartter’s syndrome is caused by mutations of NKCC2 or ROMK, classic Bartter’s syndrome by mutations of ClC-Kb, Bartter’s syndrome associated with sensorineural deafness is due to mutations of BSND, Gitelman’s syndrome to mutations of NCCT and Bartter’s syndrome associated with autosomal dominant hypocalcemia is linked to mutations of CASR. We review the pathophysiology of these syndromes in relation to their clinical presentation.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2.

          Inherited hypokalaemic alkalosis with low blood pressure can be divided into two groups-Gitelman's syndrome, featuring hypocalciuria, hypomagnesaemia and milder clinical manifestations, and Bartter's syndrome, featuring hypercalciuria and early presentation with severe volume depletion. Mutations in the renal Na-Cl cotransporter have been shown to cause Gitelman's syndrome. We demonstrate linkage of Bartter's syndrome to the renal Na-K-2Cl cotransporter gene NKCC2, and identify frameshift or non-conservative missense mutations for this gene that co-segregate with the disease. These findings demonstrate the molecular basis of Bartter's syndrome, provide the basis for molecular classification of patients with inherited hypokalaemic alkalosis, and suggest potential phenotypes in heterozygous carriers of NKCC2 mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome.

             F. Toback,  S Faure,  P Coumel (1997)
            The Jervell and Lange-Nielsen (JLN) syndrome (MIM 220400) is an inherited autosomal recessive disease characterized by a congenital bilateral deafness associated with a QT prolongation on the electrocardiogram, syncopal attacks due to ventricular arrhythmias and a high risk of sudden death. JLN syndrome is a rare disease, which seems to affect less than one percent of all deaf children. Linkage to chromosome 11p15.5 markers was found by analysing four consanguinous families. Recombinants allowed us to map the JLN gene between D11S922 and D11S4146, to a 6-cM interval where KVLQT1, a potassium channel gene causing Romano-Ward (RW) syndrome, the dominant form of long QT syndrome, has been previously localized. An homozygous deletion-insertion event (1244, -7 +8) in the C-terminal domain of this gene was detected in three affected children of two families. We found that KVLQT1 is expressed in the stria vascularis of mouse inner ear by in situ hybridization. Taken together, our data indicate that KVLQT1 is responsible for both JLN and RW syndromes and has a key role not only in the ventricular repolarization but also in normal hearing, probably via the control of endolymph homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK.

              Mutations in the Na-K-2Cl cotransporter (NKCC2), a mediator of renal salt reabsorption, cause Bartter's syndrome, featuring salt wasting, hypokalaemic alkalosis, hypercalciuria and low blood pressure. NKCC2 mutations can be excluded in some Bartter's kindreds, prompting examination of regulators of cotransporter activity. One regulator is believed to be ROMK, an ATP-sensitive K+ channel that 'recycles' reabsorbed K+ back to the tubule lumen. Examination of the ROMK gene reveals mutations that co-segregate with the disease and disrupt ROMK function in four Bartter's kindreds. Our findings establish the genetic heterogeneity of Bartter's syndrome, and demonstrate the physiologic role of ROMK in vivo.
                Bookmark

                Author and article information

                Journal
                NEP
                Nephron Physiol
                10.1159/issn.1660-2137
                Nephron Physiology
                S. Karger AG
                1660-2137
                2004
                March 2004
                29 March 2004
                : 96
                : 3
                : p65-p78
                Affiliations
                aDepartment of Nephrology, Katholieke Universiteit Leuven and bLaboratory of Physiology, Limburgs Universitair Centrum, Diepenbeek, Belgium
                Article
                76752 Nephron Physiol 2004;96:p65–p78
                10.1159/000076752
                15056980
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 2, References: 106, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/76752
                Categories
                Minireview

                Comments

                Comment on this article