10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Induction and Stabilization of IκBα by Nitric Oxide Mediates Inhibition of NF-κB

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Function and activation of NF-kappa B in the immune system.

          NF-kappa B is a ubiquitous transcription factor. Nevertheless, its properties seem to be most extensively exploited in cells of the immune system. Among these properties are NF-kappa B's rapid posttranslational activation in response to many pathogenic signals, its direct participation in cytoplasmic/nuclear signaling, and its potency to activate transcription of a great variety of genes encoding immunologically relevant proteins. In vertebrates, five distinct DNA binding subunits are currently known which might extensively heterodimerize, thereby forming complexes with distinct transcriptional activity, DNA sequence specificity, and cell type- and cell stage-specific distribution. The activity of DNA binding NF-kappa B dimers is tightly controlled by accessory proteins called I kappa B subunits of which there are also five different species currently known in vertebrates. I kappa B proteins inhibit DNA binding and prevent nuclear uptake of NF-kappa B complexes. An exception is the Bcl-3 protein which in addition can function as a transcription activating subunit in th nucleus. Other I kappa B proteins are rather involved in terminating NF-kappa B's activity in the nucleus. The intracellular events that lead to the inactivation of I kappa B, i.e. the activation of NF-kappa B, are complex. They involve phosphorylation and proteolytic reactions and seem to be controlled by the cells' redox status. Interference with the activation or activity of NF-kappa B may be beneficial in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, acute phase response, and radiation damage. The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.

            To test the hypothesis that nitric oxide (NO) limits endothelial activation, we treated cytokine-stimulated human saphenous vein endothelial cells with several NO donors and assessed their effects on the inducible expression of vascular cell adhesion molecule-1 (VCAM-1). In a concentration-dependent manner, NO inhibited interleukin (IL)-1 alpha-stimulated VCAM-1 expression by 35-55% as determined by cell surface enzyme immunoassays and flow cytometry. This inhibition was paralleled by reduced monocyte adhesion to endothelial monolayers in nonstatic assays, was unaffected by cGMP analogues, and was quantitatively similar after stimulation by either IL-1 alpha, IL-1 beta, IL-4, tumor necrosis factor (TNF alpha), or bacterial lipopolysaccharide. NO also decreased the endothelial expression of other leukocyte adhesion molecules (E-selectin and to a lesser extent, intercellular adhesion molecule-1) and secretable cytokines (IL-6 and IL-8). Inhibition of endogenous NO production by L-N-monomethyl-arginine also induced the expression of VCAM-1, but did not augment cytokine-induced VCAM-1 expression. Nuclear run-on assays, transfection studies using various VCAM-1 promoter reporter gene constructs, and electrophoretic mobility shift assays indicated that NO represses VCAM-1 gene transcription, in part, by inhibiting NF-kappa B. We propose that NO's ability to limit endothelial activation and inhibit monocyte adhesion may contribute to some of its antiatherogenic and antiinflammatory properties within the vessel wall.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway.

              The eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) participates in many parts of the genetic program mediating T lymphocyte activation and growth. Nuclear expression of NF-kappa B occurs after its induced dissociation from its cytoplasmic inhibitor I kappa B alpha. Phorbol ester and tumor necrosis factor-alpha induction of nuclear NF-kappa B is associated with both the degradation of performed I kappa B alpha and the activation of I kappa B alpha gene expression. Transfection studies indicate that the I kappa B alpha gene is specifically induced by the 65-kilodalton transactivating subunit of NF-kappa B. Association of the newly synthesized I kappa B alpha with p65 restores intracellular inhibition of NF-kappa B DNA binding activity and prolongs the survival of this labile inhibitor. Together, these results show that NF-kappa B controls the expression of I kappa B alpha by means of an inducible autoregulatory pathway.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                June 09 1995
                June 09 1995
                : 270
                : 23
                : 14214-14219
                Article
                10.1074/jbc.270.23.14214
                5e3a6b8e-11ec-41c4-b1eb-897c0505b56f
                © 1995
                History

                Comments

                Comment on this article