30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Reliability and Accuracy for Field Deployable Bioforensic Detection and Discrimination of Xylella fastidiosa subsp. pauca, Causal Agent of Citrus Variegated Chlorosis Using Razor Ex Technology and TaqMan Quantitative PCR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca ( Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology.

          Xylophagous leafhopppers are common and abundant insects of tropical and subtropical environments and play important ecological roles in these ecosystems. The feeding biology of these insects is unique in terms of their high feeding rates and a digestive physiology that allows them to assimilate amino acids, organic acids, and sugars at approximately 99% efficiency. For those species well studied, fluctuations in plant xylem chemistry and tension appear to determine the diurnal and seasonal use of their host plants. Relatively few species of xylem fluid-feeding leafhoppers are considered important pests in commercial agriculture, as they transmit the bacterial plant pathogen Xylella fastidiosa. X. fastidiosa induces diseases of grapevines, citrus, coffee, almond, alfalfa, stone fruits, landscape ornamentals, and native hardwoods for which there is no cure. Two Xylella diseases, citrus variegated chlorosis (CVC) and Pierce's disease (PD) of grapevines, have emerged as important issues within the past decade. In Brazil, CVC became important in the early 1990s and has now expanded throughout many citrus-growing areas of South America and threatens to spread to North America. The recent establishment of the exotic glassy-winged sharpshooter (Homalodisca coagulata) in California now threatens much of the United States' wine grape, table grape, and almond production. The spread of H. coagulata throughout southern California and the spread of CVC northward from Argentina through Brazil exemplifies the biological risks from exotic species. The occurrence and epidemiology of leafhopper-vectored Xylella diseases are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.

            Diseases caused by Xylella fastidiosa have attained great importance worldwide as the pathogen and its insect vectors have been disseminated. Since this is the first plant pathogenic bacterium for which a complete genome sequence was determined, much progress has been made in understanding the process by which it spreads within the xylem vessels of susceptible plants as well as the traits that contribute to its acquisition and transmission by sharpshooter vectors. Although this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty acid signal molecule to coordinate virulence gene expression, the traits that it utilizes to cause disease and the manner in which they are regulated differ substantially from those of related plant pathogens. Its complex lifestyle as both a plant and insect colonist involves traits that are in conflict with these stages, thus apparently necessitating the use of a gene regulatory scheme that allows cells expressing different traits to co-occur in the plant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fastidious xylem-limited bacterial plant pathogens.

              Numerous bacteria have been isolated from within plants, and many reported from xylem, but only three species of xylem-limited bacteria (XLB) that are fastidious in cultural requirements, are plant pathogens, and exclusively occupy xylem, have been well characterized. Two XLB, Xylella fastidiosa and Pseudomonas syzygii, are transmitted by sucking insects that feed on xylem sap but are not transmitted mechanically from plant to plant. In contrast, Clavibacter xyli is mechanically transmitted to plants by cutting tools. All of these XLB occupy a highly specialized yet diverse ecological niche: the water-conducting systems of an extremely wide range of plant hosts. A variety of detection methods are available as diagnostic aids; each method has advantages and disadvantages; no single method is best for all uses. Molecular and genetic comparisons of strains of XLB lag behind progress being made for many other plant-pathogenic bacteria, but such studies are needed to answer important questions: (a) How do XLB move from cell to cell within plants? (b) What are the physiological and genetic bases of plant host specificity for XLB? (c) Why are only xylem-feeding specialists vectors of X. fastidiosa (and probably P. syzygii), when many leafhoppers feed regularly (but not continuously) on xylem?
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                29 November 2013
                : 8
                : 11
                : e81647
                Affiliations
                [1 ]National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, Oklahoma, United States of America
                [2 ]Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
                [3 ]Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
                Virginia Tech, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MA FMOC JF UM. Performed the experiments: PO MA. Analyzed the data: MA. Contributed reagents/materials/analysis tools: JF FMOC. Wrote the manuscript: PO MA JF UM FMOC.

                [¤]

                Current address: Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America

                Article
                PONE-D-13-24668
                10.1371/journal.pone.0081647
                3843690
                24312333
                5e405d96-4d04-44ac-b662-ceb8e4da98ce
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 June 2013
                : 15 October 2013
                Funding
                This work was supported by Oklahoma Agricultural Experiment Station, Oklahoma State University (project number OKL 02773). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article