18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins

      research-article
      1 , , 1 , 1
      World Journal of Surgical Oncology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          The aim of our study was to evaluate survival outcomes in malignant mixed Mullerian tumors (MMMT) of the uterus with respect to the role of cell cycle and apoptotic regulatory proteins in the carcinomatous and sarcomatous components.

          Methods

          23 cases of uterine MMMT identified from the Saskatchewan Cancer Agency (1970-1999) were evaluated. Immunohistochemical expression of Bad, Mcl-1, bcl-x, bak, mdm2, bax, p16, p21, p53, p27, EMA, Bcl-2, Ki67 and PCNA was correlated with clinico-pathological data including survival outcomes.

          Results

          Histopathological examination confirmed malignant epithelial component with homologous (12 cases) and heterologous (11 cases) sarcomatous elements. P53 was strongly expressed (70-95%) in 15 cases and negative in 5 cases. The average survival in the p53+ve cases was 3.56 years as opposed to 8.94 years in p53-ve cases. Overexpression of p16 and Mcl-1 were observed in patients with longer survival outcomes (> 2 years). P16 and p21 were overexpressed in the carcinomatous and sarcomatous elements respectively. Cyclin-D1 was focally expressed only in the carcinomatous elements.

          Conclusions

          Our study supports that a) cell cycle and apoptotic regulatory protein dysregulation is an important pathway for tumorigenesis and b) p53 is an important immunoprognostic marker in MMMT of the uterus.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.

          Bcl-2 protein is able to repress a number of apoptotic death programs. To investigate the mechanism of Bcl-2's effect, we examined whether Bcl-2 interacted with other proteins. We identified an associated 21 kd protein partner, Bax, that has extensive amino acid homology with Bcl-2, focused within highly conserved domains I and II. Bax is encoded by six exons and demonstrates a complex pattern of alternative RNA splicing that predicts a 21 kd membrane (alpha) and two forms of cytosolic protein (beta and gamma). Bax homodimerizes and forms heterodimers with Bcl-2 in vivo. Overexpressed Bax accelerates apoptotic death induced by cytokine deprivation in an IL-3-dependent cell line. Overexpressed Bax also counters the death repressor activity of Bcl-2. These data suggest a model in which the ratio of Bcl-2 to Bax determines survival or death following an apoptotic stimulus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.

            The bax gene promoter region contains four motifs with homology to consensus p53-binding sites. In cotransfection assays using p53-deficient tumor cell lines, wild-type but not mutant p53 expression plasmids transactivated a reporter gene plasmid that utilized the bax gene promoter to drive transcription of chloramphenicol acetyltransferase. In addition, wild-type p53 transactivated reporter gene constructs containing a heterologous minimal promoter and a 39-bp region from the bax gene promoter in which the p53-binding site consensus sequences reside. Introduction of mutations into the consensus p53-binding site sequences abolished p53 responsiveness of reporter gene plasmids. Wild-type but not mutant p53 protein bound to oligonucleotides corresponding to this region of the bax promoter, based on gel retardation assays. Taken together, the results suggest that bax is a p53 primary-response gene, presumably involved in a p53-regulated pathway for induction of apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53.

              Through direct cloning of p53 binding sequences from human genomic DNA, we have isolated a novel gene, designated p53AIP1 (p53-regulated Apoptosis-Inducing Protein 1), whose expression is inducible by wild-type p53. Ectopically expressed p53AIP1, which is localized within mitochondria, leads to apoptotic cell death through dissipation of mitochondrial A(psi)m. We have found that upon severe DNA damage, Ser-46 on p53 is phosphorylated and apoptosis is induced. In addition, substitution of Ser-46 inhibits the ability of p53 to induce apoptosis and selectively blocks expression of p53AIP1. Our results suggest that p53AIP1 is likely to play an important role in mediating p53-dependent apoptosis, and phosphorylation of Ser-46 regulates the transcriptional activation of this apoptosis-inducing gene.
                Bookmark

                Author and article information

                Journal
                World J Surg Oncol
                World Journal of Surgical Oncology
                BioMed Central
                1477-7819
                2010
                19 July 2010
                : 8
                : 60
                Affiliations
                [1 ]Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
                Article
                1477-7819-8-60
                10.1186/1477-7819-8-60
                2913917
                20642852
                5e4e9c2f-956f-40ee-aec0-abefaab426c1
                Copyright ©2010 Kanthan et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 October 2009
                : 19 July 2010
                Categories
                Research

                Surgery
                Surgery

                Comments

                Comment on this article