39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epithelial-mesenchymal transition in prostate cancer: an overview

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer.

          Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance.

          In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

          Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen receptors: how do they signal and what are their targets.

            During the past decade there has been a substantial advance in our understanding of estrogen signaling both from a clinical as well as a preclinical perspective. Estrogen signaling is a balance between two opposing forces in the form of two distinct receptors (ER alpha and ER beta) and their splice variants. The prospect that these two pathways can be selectively stimulated or inhibited with subtype-selective drugs constitutes new and promising therapeutic opportunities in clinical areas as diverse as hormone replacement, autoimmune diseases, prostate and breast cancer, and depression. Molecular biological, biochemical, and structural studies have generated information which is invaluable for the development of more selective and effective ER ligands. We have also become aware that ERs do not function by themselves but require a number of coregulatory proteins whose cell-specific expression explains some of the distinct cellular actions of estrogen. Estrogen is an important morphogen, and many of its proliferative effects on the epithelial compartment of glands are mediated by growth factors secreted from the stromal compartment. Thus understanding the cross-talk between growth factor and estrogen signaling is essential for understanding both normal and malignant growth. In this review we focus on several of the interesting recent discoveries concerning estrogen receptors, on estrogen as a morphogen, and on the molecular mechanisms of anti-estrogen signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial-mesenchymal transitions in development and pathologies.

              The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms. This process is also reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. The molecular mechanisms of EMT were primarily studied in epithelial cell lines, leading to the discovery of transduction pathways involved in the loss of epithelial cell polarity and the acquisition of a variety of mesenchymal phenotypic traits. Similar mechanisms have also been uncovered in vivo in different species, showing that EMT is controlled by remarkably well-conserved mechanisms. Current studies further emphasise the critical importance of EMT and provide a better molecular and functional definition of mesenchymal cells and how they emerged >500 million years ago as a key event in evolution.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                23 May 2017
                25 February 2017
                : 8
                : 21
                : 35376-35389
                Affiliations
                1 Progetto ONCONET2.0, Linea Progettuale 14 per L'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
                2 Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
                3 Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italya
                4 Division of Medical Oncology, A.O.R.N. dei COLLI “Ospedali Monaldi-Cotugno-CTO”, Naples, Italy
                5 Pathology Unit, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Naples, Italy
                6 Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori ‘Fondazione Giovanni Pascale’, IRCCS, Naples, Italy
                7 Department of Uro-Gynaecological Oncology, Division of Medical Oncology, Istituto Nazionale Tumori ‘Fondazione G. Pascale’, IRCCS, Naples, Italy
                8 Department of Uro-Gynaecological Oncology, Division of Urology, Istituto Nazionale Tumori ‘Fondazione G. Pascale’, IRCCS, Naples, Italy
                9 Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
                10 Scientific Directorate, Istituto Nazionale Tumori ‘Fondazione G. Pascale’, IRCCS, Naples, Italy
                11 Directorate-General for Management, Istituto Nazionale Tumori ‘Fondazione G. Pascale’, IRCCS, Naples, Italy
                Author notes
                Correspondence to: Micaela Montanari, micaela.montanari@ 123456unina.it
                Article
                15686
                10.18632/oncotarget.15686
                5471062
                28430640
                5e6dec83-cc91-439c-afea-e5f53a022f22
                Copyright: © 2017 Montanari et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 November 2016
                : 15 February 2017
                Categories
                Review

                Oncology & Radiotherapy
                prostate cancer,epithelial-mesenchymal transition,androgen receptor,tgf-β signaling,egf/egfr

                Comments

                Comment on this article