7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Treatment planning optimization with beam motion modeling for dynamic arc delivery of SBRT using Cyberknife with multileaf collimation

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife is investigated, with a view to improving treatment times. This study investigates the required modeling of robot and multileaf collimator (MLC) motion between control points in the trajectory and then uses this to develop an optimization method for treatment planning of a dynamic arc with Cyberknife. The resulting plans are compared in terms of dose‐volume histograms and estimated treatment times with those produced by a conventional beam arrangement.

          Methods

          Five SBRT patient cases (prostate A — conventional, prostate B — brachytherapy‐type, lung, liver, and partial left breast) were retrospectively studied. A suitable arc trajectory with control points spaced at 5° was proposed and treatment plans were produced for typical clinical protocols. The optimization consisted of a fluence optimization, segmentation, and direct aperture optimization using a gradient descent method. Dose delivered by the moving MLC was either taken to be the dose delivered discretely at the control points or modeled using effective fluence delivered between control points. The accuracy of calculated dose was assessed by recalculating after optimization using five interpolated beams and 100 interpolated apertures between each optimization control point. The resulting plans were compared using dose‐volume histograms and estimated treatment times with those for a conventional Cyberknife beam arrangement.

          Results

          If optimization is performed based on discrete doses delivered at the arc control points, large differences of up to 40% of the prescribed dose are seen when recalculating with interpolation. When the effective fluence between control points is taken into account during optimization, dosimetric differences are <2% for most structures when the plans are recalculated using intermediate nodes, but there are differences of up to 15% peripherally. Treatment plan quality is comparable between the arc trajectory and conventional body path. All plans meet the relevant clinical goals, with the exception of specific structures which overlap with the planning target volume. Median estimated treatment time is 355 s (range 235–672 s) for arc delivery and 675 s (range 554–1025 s) for conventional delivery.

          Conclusions

          The method of using effective fluence to model MLC motion between control points is sufficiently accurate to provide for accurate inverse planning of dynamic arcs with Cyberknife. The proposed arcing method produces treatment plans with comparable quality to the body path, with reduced estimated treatment delivery time.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Volumetric modulated arc therapy: IMRT in a single gantry arc.

          In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Volumetric modulated arc therapy: a review of current literature and clinical use in practice.

            Volumetric modulated arc therapy (VMAT) is a novel radiation technique, which can achieve highly conformal dose distributions with improved target volume coverage and sparing of normal tissues compared with conventional radiotherapy techniques. VMAT also has the potential to offer additional advantages, such as reduced treatment delivery time compared with conventional static field intensity modulated radiotherapy (IMRT). The clinical worldwide use of VMAT is increasing significantly. Currently the majority of published data on VMAT are limited to planning and feasibility studies, although there is emerging clinical outcome data in several tumour sites. This article aims to discuss the current use of VMAT techniques in practice and review the available data from planning and clinical outcome studies in various tumour sites including prostate, pelvis (lower gastrointestinal, gynaecological), head and neck, thoracic, central nervous system, breast and other tumour sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate.

              This article presents a method of quantitative assessment of the degree of conformality and its designation by a single numerical value. A conformation number is introduced to evaluate objectively the degree of conformality. A comparison is made between the conformation number as found for external beam treatment plans and ultrasonically guided 125I seed implants for localized prostate cancer. The conformation number in case of a planning target volume irradiated with two opposed open beams, three open beams, and three beams with customized blocks amounted to 0.17, 0.39, and 0.65, respectively. The conformation number as found for ultrasonically guided permanent prostate implants using 125I seeds averaged 0.72. The conformation number is a convenient instrument for indicating the degree of conformality by a single numerical value. Treatments with a conformation number greater than 0.60 might be termed conformal radiotherapy.
                Bookmark

                Author and article information

                Contributors
                james.bedford@icr.ac.uk
                Journal
                Med Phys
                Med Phys
                10.1002/(ISSN)2473-4209
                MP
                Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                0094-2405
                2473-4209
                22 October 2019
                December 2019
                : 46
                : 12 ( doiID: 10.1002/mp.v46.12 )
                : 5421-5433
                Affiliations
                [ 1 ] Joint Department of Physics The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust London SM2 5PT UK
                Author notes
                [*] [* ] Author to whom correspondence should be addressed. Electronic mail: james.bedford@ 123456icr.ac.uk ; Telephone: +44 20 8661 3477; Fax: +44 20 8643 3812.

                Article
                MP13848
                10.1002/mp.13848
                6916282
                31587322
                5e7bbffc-0922-402a-ba75-6dda37add0f9
                © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 July 2019
                : 09 September 2019
                : 23 September 2019
                Page count
                Figures: 11, Tables: 5, Pages: 13, Words: 8394
                Funding
                Funded by: Accuray, Inc
                Funded by: National Institute for Health Research (NIHR)
                Funded by: Royal Marsden NHS Foundation Trust , open-funder-registry 10.13039/100012139;
                Funded by: Institute of Cancer Research , open-funder-registry 10.13039/501100000027;
                Funded by: Cancer Research UK , open-funder-registry 10.13039/501100000289;
                Award ID: C33589/A19727
                Categories
                Research Article
                THERAPEUTIC INTERVENTIONS
                Research Articles
                Custom metadata
                2.0
                December 2019
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.3 mode:remove_FC converted:17.12.2019

                arc therapy,noncoplanar trajectory,sabr,sbrt,vmat
                arc therapy, noncoplanar trajectory, sabr, sbrt, vmat

                Comments

                Comment on this article