13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circadian control of pain and neuroinflammation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

          The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

            A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pain regulation by non-neuronal cells and inflammation

              Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
                Bookmark

                Author and article information

                Journal
                Journal of Neuroscience Research
                J Neuro Res
                Wiley
                03604012
                June 2018
                June 2018
                September 02 2017
                : 96
                : 6
                : 1002-1020
                Affiliations
                [1 ]Department of Biomedical & Molecular Sciences; Queen's University; Kingston Ontario Canada
                [2 ]Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
                [3 ]Anesthesiology & Perioperative Medicine; Queen's University; Kingston Ontario Canada
                Article
                10.1002/jnr.24150
                28865126
                5e7c884a-76ca-4f38-b3b8-65b4726d47ad
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article