39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Truncated tau deregulates synaptic markers in rat model for human tauopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer’s disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary pathology in the cortex. Using fractionation of cortical synapses, we identified an increase in endogenous rat tau isoforms in presynaptic compartment, and their mis-sorting to the postsynaptic density (PSD). Truncated transgenic tau was distributed in both compartments exhibiting specific phospho-pattern that was characteristic for each synaptic compartment. In the presynaptic compartment, truncated tau was associated with impairment of dynamic stability of microtubules which could be responsible for reduction of synaptic vesicles. In the PSD, truncated tau lowered the levels of neurofilaments. Truncated tau also significantly decreased the synaptic levels of Aβ40 but not Aβ42. These data show that truncated tau differentially deregulates synaptic proteome in pre- and postsynaptic compartments. Importantly, we show that alteration of Aβ can arise downstream of truncated tau pathology.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.

          We studied the accumulation of neurofibrillary tangles (NFTs) and senile plaques (SPs) in 10 Alzheimer's disease patients who had been examined during life. We counted NFTs and SPs in 13 cytoarchitectural regions representing limbic, primary sensory, and association cortices, and in subcortical neurotransmitter-specific areas. The degree of neuropathologic change was compared with the severity of dementia, as assessed by the Blessed Dementia Scale and duration of illness. We found that (1) the severity of dementia was positively related to the number of NFTs in neocortex, but not to the degree of SP deposition; (2) NFTs accumulate in a consistent pattern reflecting hierarchic vulnerability of individual cytoarchitectural fields; (3) NFTs appeared in the entorhinal cortex, CA1/subiculum field of the hippocampal formation, and the amygdala early in the disease process; and (4) the degree of SP deposition was also related to a hierarchic vulnerability of certain brain areas to accumulate SPs, but the pattern of SP distribution was different from that of NFT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment.

            To evaluate the total number of synapses in the stratum radiatum (str rad) of the human hippocampal CA1 subfield in individuals with mild Alzheimer disease (mAD), mild cognitive impairment (MCI), or no cognitive impairment (NCI) and determine if synapse loss is an early event in the progression of the disease. Short postmortem autopsy tissue was obtained, and an unbiased stereologic sampling scheme coupled with transmission electron microscopy was used to directly visualize synaptic contacts. Individuals with mAD had fewer synapses (55%) than the other two diagnostic groups. Individuals with MCI had a mean synaptic value that was 18% lower than the NCI group mean. The total number of synapses showed a correlation with several cognitive tests including those involving both immediate and delayed recall. Total synaptic numbers showed no relationship to the subject's Braak stage or to APOE genotype. The volume of the str rad was reduced in mAD vs the other two diagnostic groups that were not different from each other. These results strongly support the concept that synapse loss is a structural correlate involved very early in cognitive decline in mild Alzheimer disease (mAD) and supports mild cognitive impairment as a transitional stage between mAD and no cognitive impairment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L).

              Here, we describe the generation of a novel transgenic mouse model of human tauopathy. The rTg(tau(P301L))4510 mouse expresses the P301L mutation in tau (4R0N) associated with frontotemporal dementia and parkinsonism linked to chromosome 17. Transgene expression was driven by a forebrain-specific Ca(2+) calmodulin kinase II promoter system resulting in high levels of expression in the hippocampus and neocortex. Importantly, transgene expression in this model is induced via the tetracycline-operon responsive element and is suppressed after treatment with doxycycline. Continued transgene expression in rTg(tau(P301L))4510 mice results in age-dependent development of many salient characteristics of hereditary human dementia. From an early age, immunohistochemical studies demonstrated abnormal biochemical processing of tau and the presence of pathological conformation- and phosphorylation-dependent epitopes. Neurofibrillary tangle (NFT) pathology was first observed in the neocortex and progressed into the hippocampus and limbic structures with increasing age. Consistent with the formation of NFTs, immunoblots indicated an age-dependent transition of accumulating tau species from Sarkosyl soluble 55 kDa to insoluble hyperphosphorylated 64 kDa. Ultrastructural analysis revealed the presence of straight tau filaments. Furthermore, the effects of tau(P301L) expression on spatial reference memory were longitudinally tested using the Morris water maze. Compared with nontransgenic age-matched control littermates, rTg(tau(P301L))4510 mice developed significant cognitive impairments from 4 months of age. Memory deficits were accompanied by gross forebrain atrophy and a prominent loss of neurons, most strikingly in hippocampal subdivision CA1. Collectively, these data describe a novel transgenic mouse that closely mimics human tauopathy and may represent an important model for the future study of tau-related neurodegenerative disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                23 February 2015
                2015
                : 9
                : 24
                Affiliations
                [1] 1Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic
                [2] 2Axon Neuroscience GmbH Bratislava, Slovak Republic
                [3] 3Institute of Mathematics and Statistics, Masaryk University Brno, Czech Republic
                Author notes

                Edited by: Qi Yuan, Memorial University, Canada

                Reviewed by: Changiz Geula, Northwestern University, USA; Alexis Bretteville, Université Lille 2 Insitut Pasteur de Lille, France

                *Correspondence: Norbert Zilka, Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic e-mail: norbert.zilka@ 123456savba.sk

                This article was submitted to the journal Frontiers in Cellular Neuroscience.

                Article
                10.3389/fncel.2015.00024
                4337338
                25755633
                5ebbd63a-1df4-4a6a-84dc-ef5cafc2899e
                Copyright © 2015 Jadhav, Katina, Kovac, Kazmerova, Novak and Zilka.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 November 2014
                : 14 January 2015
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 83, Pages: 14, Words: 9614
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                alzheimer’s disease,truncated tau,phosphorylation,synaptic damage,tau mislocalization

                Comments

                Comment on this article