11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sepsis-associated encephalopathy: a vicious cycle of immunosuppression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.

          Physiological anti-inflammatory mechanisms can potentially be exploited for the treatment of inflammatory disorders. Here we report that the neurotransmitter acetylcholine inhibits HMGB1 release from human macrophages by signaling through a nicotinic acetylcholine receptor. Nicotine, a selective cholinergic agonist, is more efficient than acetylcholine and inhibits HMGB1 release induced by either endotoxin or tumor necrosis factor-alpha (TNF-alpha). Nicotinic stimulation prevents activation of the NF-kappaB pathway and inhibits HMGB1 secretion through a specific 'nicotinic anti-inflammatory pathway' that requires the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In vivo, treatment with nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease. These results reveal acetylcholine as the first known physiological inhibitor of HMGB1 release from human macrophages and suggest that selective nicotinic agonists for the alpha7nAChR might have therapeutic potential for the treatment of sepsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens.

            The central nervous system (CNS) regulates innate immune responses through hormonal and neuronal routes. The neuroendocrine stress response and the sympathetic and parasympathetic nervous systems generally inhibit innate immune responses at systemic and regional levels, whereas the peripheral nervous system tends to amplify local innate immune responses. These systems work together to first activate and amplify local inflammatory responses that contain or eliminate invading pathogens, and subsequently to terminate inflammation and restore host homeostasis. Here, I review these regulatory mechanisms and discuss the evidence indicating that the CNS can be considered as integral to acute-phase inflammatory responses to pathogens as the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRANSCRANIAL AMELIORATION OF INFLAMMATION AND CELL DEATH FOLLOWING BRAIN INJURY

              Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function 1, 2 . At present no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain novel insights into TBI pathogenesis, we developed a novel closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic receptor dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We additionally show that the skull bone is permeable to small molecular weight compounds and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results provide novel insights into the acute cellular response to TBI and a means to locally deliver therapeutic compounds to the site of injury.
                Bookmark

                Author and article information

                Contributors
                c_ff@sina.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                10 January 2020
                10 January 2020
                2020
                : 17
                : 14
                Affiliations
                [1 ]ISNI 0000 0004 1761 8894, GRID grid.414252.4, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, ; Beijing, 100048 People’s Republic of China
                [2 ]Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433 People’s Republic of China
                [3 ]GRID grid.452847.8, Department of Critical Care Medicine, , The Second People’s Hospital of Shenzhen, ; Shenzhen, 518035 People’s Republic of China
                Article
                1701
                10.1186/s12974-020-1701-3
                6953314
                31924221
                5efdd72f-99ef-4c41-a79d-4b0ea6c338ba
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 September 2019
                : 3 January 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81730057
                Award ID: 81842025
                Award ID: 81801935
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                sepsis-associated encephalopathy,immune suppression,vicious cycle,therapeutic target

                Comments

                Comment on this article