8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prospects for Neutron Star Equation of State Constraints using "Recycled" Millisecond Pulsars

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rotation-powered "recycled" millisecond pulsars are a variety of rapidly-spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Shapiro delay measurement of a two solar mass neutron star

          Neutron stars are composed of the densest form of matter known to exist in our universe, and thus provide a unique laboratory for exploring the properties of cold matter at super-nuclear density. Measurements of the masses or radii of these objects can strongly constrain the neutron-star matter equation of state, and consequently the interior composition of neutron stars. Neutron stars that are visible as millisecond radio pulsars are especially useful in this respect, as timing observations of the radio pulses provide an extremely precise probe of both the pulsar's motion and the surrounding space-time metric. In particular, for a pulsar in a binary system, detection of the general relativistic Shapiro delay allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar PSR J1614-2230, which show a strong Shapiro delay signature. The implied pulsar mass of 1.97 +/- 0.04 M_sun is by far the highest yet measured with such certainty, and effectively rules out the presence of hyperons, bosons, or free quarks at densities comparable to the nuclear saturation density.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A new class of radio pulsars

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rapidly rotating neutron stars in general relativity: Realistic equations of state

                Bookmark

                Author and article information

                Journal
                2015-10-21
                Article
                10.1140/epja/i2016-16037-x
                1510.06371
                5f2dd684-a27b-4f97-a0a4-7926c3d7a719

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                8 pages, 7 figures; invited contribution to the European Physics Journal A topical issue on "Exotic Matter in Neutron Stars"
                astro-ph.HE

                High energy astrophysical phenomena
                High energy astrophysical phenomena

                Comments

                Comment on this article