58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function.

          Abstract

          Intracellular temperature mapping has not previously been achieved. Now, a fluorescent polymeric thermometer has been developed that can be used in combination with fluorescence-lifetime imaging microscopy to allow thermometry with spatial and temperature resolutions of 200 nm and 0.18–0.58 ° C.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Fluorescence lifetime measurements and biological imaging.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic characterization of the human centrosome by protein correlation profiling.

            The centrosome is the major microtubule-organizing centre of animal cells and through its influence on the cytoskeleton is involved in cell shape, polarity and motility. It also has a crucial function in cell division because it determines the poles of the mitotic spindle that segregates duplicated chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temperature sensing using fluorescent nanothermometers.

              Acquiring the temperature of a single living cell is not a trivial task. In this paper, we devise a novel nanothermometer, capable of accurately determining the temperature of solutions as well as biological systems such as HeLa cancer cells. The nanothermometer is based on the temperature-sensitive fluorescence of NaYF(4):Er(3+),Yb(3+) nanoparticles, where the intensity ratio of the green fluorescence bands of the Er(3+) dopant ions ((2)H(11/2) --> (4)I(15/2) and (4)S(3/2) --> (4)I(15/2)) changes with temperature. The nanothermometers were first used to obtain thermal profiles created when heating a colloidal solution of NaYF(4):Er(3+),Yb(3+) nanoparticles in water using a pump-probe experiment. Following incubation of the nanoparticles with HeLa cervical cancer cells and their subsequent uptake, the fluorescent nanothermometers measured the internal temperature of the living cell from 25 degrees C to its thermally induced death at 45 degrees C.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                28 February 2012
                : 3
                : 705
                Affiliations
                [1 ]simpleGraduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
                [2 ]simpleThe Graduate School of Biological Sciences, Nara Institute of Science and Technology , 8916-5 Takayama-Cho Ikoma-shi, Nara 630-0101, Japan.
                [3 ]simpleInstitute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi Sakyo-ku , Kyoto 606-8501, Japan.
                Author notes
                Article
                ncomms1714
                10.1038/ncomms1714
                3293419
                22426226
                5f53cfd5-6c79-4bc2-8d9f-5ba6351203f4
                Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 05 July 2011
                : 31 January 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article