0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Store-operated calcium channels in skin

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The skin is a complex organ that acts as a protective layer against the external environment. It protects the internal tissues from harmful agents, dehydration, ultraviolet radiation and physical injury as well as conferring thermoregulatory control, sensation, immunological surveillance and various biochemical functions. The diverse cell types that make up the skin include 1) keratinocytes, which form the bulk of the protective outer layer; 2) melanocytes, which protect the body from ultraviolet radiation by secreting the pigment melanin; and 3) cells that form the secretory appendages: eccrine and apocrine sweat glands, and the sebaceous gland. Emerging evidence suggests that store-operated Ca 2+ entry (SOCE), whereby depletion of intracellular Ca 2+ stores triggers Ca 2+ influx across the plasma membrane, is central to the normal physiology of these cells and thus skin function. Numerous skin pathologies including dermatitis, anhidrotic ectodermal dysplasia, hyperhidrosis, hair loss and cancer are now linked to dysfunction in SOCE proteins. Principal amongst these are the stromal interaction molecules (STIMs) that sense Ca 2+ depletion and Orai channels that mediate Ca 2+ influx. In this review, the roles of STIM, Orai and other store-operated channels are discussed in the context of keratinocyte differentiation, melanogenesis, and eccrine sweat secretion. We explore not only STIM1-Orai1 as drivers of SOCE, but also independent actions of STIM, and emerging signal cascades stemming from their activities. Roles are discussed for the elusive transient receptor potential canonical channel (TRPC) complex in keratinocytes, Orai channels in Ca 2+-cyclic AMP signal crosstalk in melanocytes, and Orai isoforms in eccrine sweat gland secretion.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx.

          Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane.

            As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans.

              Melanin pigmentation protects the skin from the damaging effects of ultraviolet radiation (UVR). There are two types of melanin, the red phaeomelanin and the black eumelanin, both of which are present in human skin. Eumelanin is photoprotective whereas phaeomelanin, because of its potential to generate free radicals in response to UVR, may contribute to UV-induced skin damage. Individuals with red hair have a predominance of phaeomelain in hair and skin and/or a reduced ability to produce eumelanin, which may explain why they fail to tan and are at risk from UVR. In mammals the relative proportions of phaeomelanin and eumelanin are regulated by melanocyte stimulating hormone (MSH), which acts via its receptor (MC1R), on melanocytes, to increase the synthesis of eumelanin and the product of the agouti locus which antagonises this action. In mice, mutations at either the MC1R gene or agouti affect the pattern of melanogenesis resulting in changes in coat colour. We now report the presence of MC1R gene sequence variants in humans. These were found in over 80% of individuals with red hair and/or fair skin that tans poorly but in fewer than 20% of individuals with brown or black hair and in less than 4% of those who showed a good tanning response. Our findings suggest that in humans, as in other mammals, the MC1R is a control point in the regulation of pigmentation phenotype and, more importantly, that variations in this protein are associated with a poor tanning response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 October 2022
                2022
                : 13
                : 1033528
                Affiliations
                [1] 1 Institute of Systems , Molecular and Integrative Biology , University of Liverpool , Liverpool, United Kingdom
                [2] 2 Department of Physiology and Membrane Biology , School of Medicine , University of California, Davis , Davis, CA, United States
                [3] 3 Unilever Research and Development, Port Sunlight Laboratory , Bebington, Wirral, United Kingdom
                Author notes

                Edited by: Michael M. White, Drexel University College of Medicine, United States

                Reviewed by: Isaac Jardin, University of Extremadura, Spain

                *Correspondence: Richard L Evans, Richard.Evans@ 123456unilever.com

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology

                Article
                1033528
                10.3389/fphys.2022.1033528
                9581152
                36277201
                5f78b703-6159-482d-b9f5-a83de444a76a
                Copyright © 2022 Manning, Dart and Evans.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2022
                : 12 September 2022
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council , doi 10.13039/501100000268;
                Categories
                Physiology
                Mini Review

                Anatomy & Physiology
                skin,store-operated calcium entry,stim,orai channels,trpc channels,keratinocytes,melanocytes,eccrine sweat gland

                Comments

                Comment on this article