Blog
About

235
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotics and Bacterial Resistance in the 21st Century

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.

          Related collections

          Most cited references 457

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial biofilms: a common cause of persistent infections.

          Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America.

            The Infectious Diseases Society of America (IDSA) continues to view with concern the lean pipeline for novel therapeutics to treat drug-resistant infections, especially those caused by gram-negative pathogens. Infections now occur that are resistant to all current antibacterial options. Although the IDSA is encouraged by the prospect of success for some agents currently in preclinical development, there is an urgent, immediate need for new agents with activity against these panresistant organisms. There is no evidence that this need will be met in the foreseeable future. Furthermore, we remain concerned that the infrastructure for discovering and developing new antibacterials continues to stagnate, thereby risking the future pipeline of antibacterial drugs. The IDSA proposed solutions in its 2004 policy report, "Bad Bugs, No Drugs: As Antibiotic R&D Stagnates, a Public Health Crisis Brews," and recently issued a "Call to Action" to provide an update on the scope of the problem and the proposed solutions. A primary objective of these periodic reports is to encourage a community and legislative response to establish greater financial parity between the antimicrobial development and the development of other drugs. Although recent actions of the Food and Drug Administration and the 110th US Congress present a glimmer of hope, significant uncertainly remains. Now, more than ever, it is essential to create a robust and sustainable antibacterial research and development infrastructure--one that can respond to current antibacterial resistance now and anticipate evolving resistance. This challenge requires that industry, academia, the National Institutes of Health, the Food and Drug Administration, the Centers for Disease Control and Prevention, the US Department of Defense, and the new Biomedical Advanced Research and Development Authority at the Department of Health and Human Services work productively together. This report provides an update on potentially effective antibacterial drugs in the late-stage development pipeline, in the hope of encouraging such collaborative action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Origins and evolution of antibiotic resistance.

              Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.
                Bookmark

                Author and article information

                Journal
                Perspect Medicin Chem
                Perspect Medicin Chem
                Perspectives in Medicinal Chemistry
                Perspectives in Medicinal Chemistry
                Libertas Academica
                1177-391X
                2014
                28 August 2014
                : 6
                : 25-64
                Affiliations
                [1 ]Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Berlin, Germany.
                [2 ]Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
                Author notes
                Article
                pmc-6-2014-025
                10.4137/PMC.S14459
                4159373
                © 2014 the author(s), publisher and licensee Libertas Academica Ltd.

                This is an open access article published under the Creative Commons CC-BY-NC 3.0 License.

                Categories
                Review

                Comments

                Comment on this article