8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eculizumab, a monoclonal antibody (mAb) directed against complement protein C5, is considered to be the current standard of care for patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome. This study describes the generation and preclinical attributes of ALXN1210, a new long-acting anti-C5 mAb, obtained through select modifications to eculizumab to both largely abolish target-mediated drug disposition (TMDD) and increase recycling efficiency via the neonatal Fc receptor (FcRn). To attenuate the effect of TMDD on plasma terminal half-life (t 1/2), histidine substitutions were engineered into the complementarity-determining regions of eculizumab to enhance the dissociation rate of the mAb:C5 complex in the acidic early endosome relative to the slightly basic pH of blood. Antibody variants with optimal pH-dependent binding to C5 exhibited little to no TMDD in mice in the presence of human C5. To further enhance the efficiency of FcRn-mediated recycling of the antibody, two additional substitutions were introduced to increase affinity for human FcRn. These substitutions yielded an additional doubling of the t ½ of surrogate anti-mouse C5 antibodies with reduced TMDD in transgenic mice expressing the human FcRn. In conclusion, ALXN1210 is a promising new therapeutic candidate currently in clinical development for treatment of patients with PNH and atypical hemolytic uremic syndrome.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.

          The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration.

            Components of innate immunity have recently been implicated in the regulation of developmental processes. Most strikingly, complement factors appear to be involved in limb regeneration in certain urodele species. Prompted by these observations and anticipating a conserved role of complement in mammalian regeneration, we have now investigated the involvement of complement component C5 in liver regeneration, using a murine model of CCl(4)-induced liver toxicity and mice genetically deficient in C5. C5-deficient mice showed severely defective liver regeneration and persistent parenchymal necrosis after exposure to CCl(4.) In addition, these mice showed a marked delay in the re-entry of hepatocytes into the cell cycle (S phase) and diminished mitotic activity, as demonstrated, respectively, by the absence of 5-bromo-2'-deoxyuridine incorporation in hepatocytes, and the rare occurrence of mitoses in the liver parenchyma. Reconstitution of C5-deficient mice with murine C5 or C5a significantly restored hepatocyte regeneration after toxic injury. Furthermore, blockade of the C5a receptor (C5aR) abrogated the ability of hepatocytes to proliferate in response to liver injury, providing a mechanism by which C5 exerts its function, and establishing a critical role for C5aR signaling in the early events leading to hepatocyte proliferation. These results support a novel role for C5 in liver regeneration and strongly implicate the complement system as an important immunoregulatory component of hepatic homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease.

              Activated components of the complement system are potent mediators of inflammation that may play an important role in numerous disease states. For example, they have been implicated in the pathogenesis of inflammatory joint diseases including rheumatoid arthritis (RA). To target complement activation in immune-mediated joint inflammation, we have utilized monoclonal antibodies (mAbs) that inhibit the complement cascade at C5, blocking the generation of the major chemotactic and proinflammatory factors C5a and C5b-9. In this study, we demonstrate the efficacy of a mAb specific for murine C5 in the treatment of collagen-induced arthritis, an animal model for RA. We show that systemic administration of the anti-C5 mAb effectively inhibits terminal complement activation in vivo and prevents the onset of arthritis in immunized animals. Most important, anti-C5 mAb treatment is also highly effective in ameliorating established disease. These results demonstrate a critical role for activated terminal complement components not only in the induction but also in the progression of collagen-induced arthritis and suggest that C5 may be an attractive therapeutic target in RA.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Writing – review & editing
                Role: Formal analysisRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                12 April 2018
                2018
                : 13
                : 4
                : e0195909
                Affiliations
                [1 ] Research, Alexion Pharmaceuticals, Inc., New Haven, Connecticut, United States of America
                [2 ] Product Characterization, Alexion Pharmaceuticals, Inc., New Haven, Connecticut, United States of America
                [3 ] Early Assay Development, Alexion Pharmaceuticals, Inc., New Haven, Connecticut, United States of America
                University of Toledo, UNITED STATES
                Author notes

                Competing Interests: All authors were employees and shareholders of Alexion Pharmaceuticals, Inc., at the time the study was performed. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

                Author information
                http://orcid.org/0000-0001-9505-1668
                Article
                PONE-D-17-44736
                10.1371/journal.pone.0195909
                5897016
                29649283
                5fe117b6-c9df-4a0a-8d37-f3da8a0f3c3e
                © 2018 Sheridan et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 December 2017
                : 2 April 2018
                Page count
                Figures: 4, Tables: 3, Pages: 15
                Funding
                This study was funded by Alexion Pharmaceuticals, Inc. ( http://www.alexion.com/). Alexion Pharmaceuticals, Inc., was involved with study design, data collection and analysis, decision to publish, and preparation of the manuscript.
                Categories
                Research Article
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Histidine
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Amino Acids
                Basic Amino Acids
                Histidine
                Biology and Life Sciences
                Biochemistry
                Proteins
                Amino Acids
                Basic Amino Acids
                Histidine
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Complement System
                Complement Inhibitors
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Complement System
                Complement Inhibitors
                Biology and Life Sciences
                Immunology
                Immune System
                Complement System
                Complement Inhibitors
                Medicine and Health Sciences
                Immunology
                Immune System
                Complement System
                Complement Inhibitors
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Complement System
                Complement Inhibitors
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Complement System
                Complement Inhibitors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Complement System
                Complement Inhibitors
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Antibodies
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Antibodies
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Complement System
                Complement Activation
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Complement System
                Complement Activation
                Biology and Life Sciences
                Immunology
                Immune System
                Complement System
                Complement Activation
                Medicine and Health Sciences
                Immunology
                Immune System
                Complement System
                Complement Activation
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Complement System
                Complement Activation
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Complement System
                Complement Activation
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Complement System
                Complement Activation
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Complement System
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Complement System
                Biology and Life Sciences
                Immunology
                Immune System
                Complement System
                Medicine and Health Sciences
                Immunology
                Immune System
                Complement System
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Complement System
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Complement System
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Complement System
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Endosomes
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Custom metadata
                All relevant data are contained within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article