9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SGK1-mediated fibronectin formation in diabetic nephropathy.

      Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
      Animals, Cells, Cultured, Diabetic Nephropathies, enzymology, genetics, metabolism, Fibronectins, biosynthesis, Gene Expression Regulation, Glucose, pharmacology, Humans, Immediate-Early Proteins, Male, Mesangial Cells, Mice, Mice, Inbred C57BL, Protein-Serine-Threonine Kinases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The serum and glucocorticoid inducible kinase SGK1 has been shown to be up regulated in fibrosing tissue including diabetic nephropathy. The present study has been performed to determine the time course of SGK1 transcription in mouse kidneys following induction of diabetes by streptozotocin (STZ). Moreover, the study aimed to explore whether SGK1 may play an active role in the stimulation of matrix protein formation during hyperglycemia. The induction of diabetes in 8 weeks old male C57Bl/6 mice was indeed followed by a significant (p< 0.001) increase of SGK1 transcript levels (up to 2.5-fold) and protein abundance (up to 2.8-fold) both peaking 4 weeks after STZ treatment. The SGK1 transcript levels and protein abundance declined thereafter but remained significantly elevated up to 12 weeks (p<0.05). Exposure to high extracellular glucose concentration (25 mM) significantly increased SGK1 transcript levels in human mesangial cells (HMCs). At low extracellular glucose concentration (5.5 mM), transfection with constitutively active (S422D)SGK1 and transdominant inhibitory (K127N)SGK1 did not significantly modify fibronectin formation by HMCs. Exposure to high extracellular glucose concentration stimulated fibronectin formation (by 2.2 fold), an effect abrogated by transfection with inactive (K127N)SGK1 (1.2 fold) and markedly enhanced by transfection with (S422D)SGK1 (4.7 fold). In conclusion, hyperglycemia of diabetes mellitus leads to partially transient increase of SGK1 transcription and translation. SGK1 overexpression alone has little effect on fibronectin formation but potentiates the effect of hyperglycemia. Thus, SGK1 is upregulated in diabetic nephropathy and actively participates in the stimulation of matrix protein deposition in this common deleterious complication of diabetic hyperglycemia. (c) 2005 S. Karger AG, Basel

          Related collections

          Author and article information

          Comments

          Comment on this article