3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Of mice and men: Is there a future for metformin in the treatment of hepatic steatosis?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism by which metformin reduces glucose production in type 2 diabetes.

          To examine the mechanism by which metformin lowers endogenous glucose production in type 2 diabetic patients, we studied seven type 2 diabetic subjects, with fasting hyperglycemia (15.5 +/- 1.3 mmol/l), before and after 3 months of metformin treatment. Seven healthy subjects, matched for sex, age, and BMI, served as control subjects. Rates of net hepatic glycogenolysis, estimated by 13C nuclear magnetic resonance spectroscopy, were combined with estimates of contributions to glucose production of gluconeogenesis and glycogenolysis, measured by labeling of blood glucose by 2H from ingested 2H2O. Glucose production was measured using [6,6-2H2]glucose. The rate of glucose production was twice as high in the diabetic subjects as in control subjects (0.70 +/- 0.05 vs. 0.36 +/- 0.03 mmol x m(-2) min(-1), P < 0.0001). Metformin reduced that rate by 24% (to 0.53 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0009) and fasting plasma glucose concentration by 30% (to 10.8 +/- 0.9 mmol/l, P = 0.0002). The rate of gluconeogenesis was three times higher in the diabetic subjects than in the control subjects (0.59 +/- 0.03 vs. 0.18 +/- 0.03 mmol x m(-2) min(-1) and metformin reduced that rate by 36% (to 0.38 +/- 0.03 mmol x m(-2) x min(-1), P = 0.01). By the 2H2O method, there was a twofold increase in rates of gluconeogenesis in diabetic subjects (0.42 +/- 0.04 mmol m(-2) x min(-1), which decreased by 33% after metformin treatment (0.28 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0002). There was no glycogen cycling in the control subjects, but in the diabetic subjects, glycogen cycling contributed to 25% of glucose production and explains the differences between the two methods used. In conclusion, patients with poorly controlled type 2 diabetes have increased rates of endogenous glucose production, which can be attributed to increased rates of gluconeogenesis. Metformin lowered the rate of glucose production in these patients through a reduction in gluconeogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials.

            Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH): NAFLD causes an increased risk of cardiovascular disease, diabetes and liver-related complications (the latter confined to NASH). The effect of proposed treatments on liver disease, glucose metabolism and cardiovascular risk in NAFLD is unknown. We reviewed the evidence for the management of liver disease and cardio-metabolic risk in NAFLD. Publications through November 2011 were systematically reviewed by two authors. Outcomes evaluated though standard methods were: histological/radiological/biochemical features of NAFLD, variables of glucose metabolism and cardiovascular risk factors. Seventy-eight randomised trials were included (38 in NASH, 40 in NAFLD): 41% assessed post-treatment histology, 71% assessed glucose metabolism and 88% assessed cardiovascular risk factors. Lifestyle intervention, thiazolidinediones, metformin and antioxidants were most extensively evaluated. Lifestyle-induced weight loss was safe and improved cardio-metabolic risk profile; a weight loss ≥7% improved histological disease activity, but was achieved by <50% patients. Statins and polyunsaturated fatty acids improved steatosis, but their effects on liver histology are unknown. Thiazolidinediones improved histological disease activity, glucose, lipid and inflammatory variables and delayed fibrosis progression. Pioglitazone also improved blood pressure. Weight gain (up to 4.8%) was common. Antioxidants yielded mixed histological results: vitamin E improved histological disease activity when administered for 2 years, but increased insulin resistance and plasma triacylglycerols. Weight loss is safe, and improves liver histology and cardio-metabolic profile. For patients not responding to lifestyle intervention, pioglitazone improves histological disease activity, slows fibrosis progression and extensively ameliorates cardio-metabolic endpoints. Further randomised controlled trials (RCTs) of adequate size and duration will assess long-term safety and efficacy of proposed treatments on clinical outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metformin action: concentrations matter.

              Metformin has been used for nearly a century and is now the most widely prescribed oral anti-diabetic agent worldwide. Yet how metformin acts remains only partially understood and controversial. One key reason may be that almost all previous studies were conducted with supra-pharmacological concentrations (doses) of metformin, 10-100 times higher than maximally achievable therapeutic concentrations found in patients with type 2 diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Diabetes, Obesity and Metabolism
                Diabetes Obes Metab
                Wiley
                14628902
                April 2019
                April 2019
                December 21 2018
                : 21
                : 4
                : 749-760
                Affiliations
                [1 ]Oxford Centre for Diabetes, Endocrinology and Metabolism; Churchill Hospital; Oxford UK
                [2 ]Oxford NIHR Biomedical Research Centre; Churchill Hospital; Oxford UK
                Article
                10.1111/dom.13592
                30456918
                6007efa3-5074-48d7-93f0-fc80609042dd
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article