2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parvovirus-Based Combinatorial Immunotherapy: A Reinforced Therapeutic Strategy against Poor-Prognosis Solid Cancers

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Oncolytic virotherapy using oncolytic viruses with natural or engineered cancer-destroying capacities has emerged as a promising treatment concept in modern oncology. Rodent protoparvoviruses, in particular the rat H-1 parvovirus (H-1PV), have demonstrated their broad-range tumor-suppressive properties in both preclinical models and clinical studies. In addition to inducing selective tumor cell death, these viruses are also able to exert immunostimulating effects and reverse tumor-driven immune suppression. Parvovirotherapy holds therefore a potential for enhancing the efficacy of other cancer immunotherapies. The aim of this review is to provide an overview of all H-1PV-based combinatorial immunotherapeutic approaches against poor-prognosis human solid cancers that have been tested so far. Current challenges and future prospects of parvoviro-immunotherapy, notably parvovirus inclusion into various immunotherapeutic protocols against glioblastoma, pancreatic cancer, among other standard therapy-refractory solid malignancies, are also discussed in the light of H-1PV further clinical development.

          Abstract

          Resistance to anticancer treatments poses continuing challenges to oncology researchers and clinicians. The underlying mechanisms are complex and multifactorial. However, the immunologically “cold” tumor microenvironment (TME) has recently emerged as one of the critical players in cancer progression and therapeutic resistance. Therefore, TME modulation through induction of an immunological switch towards inflammation (“warming up”) is among the leading approaches in modern oncology. Oncolytic viruses (OVs) are seen today not merely as tumor cell-killing (oncolytic) agents, but also as cancer therapeutics with multimodal antitumor action. Due to their intrinsic or engineered capacity for overcoming immune escape mechanisms, warming up the TME and promoting antitumor immune responses, OVs hold the potential for creating a proinflammatory background, which may in turn facilitate the action of other (immunomodulating) drugs. The latter provides the basis for the development of OV-based immunostimulatory anticancer combinations. This review deals with the smallest among all OVs, the H-1 parvovirus (H-1PV), and focuses on H-1PV-based combinatorial approaches, whose efficiency has been proven in preclinical and/or clinical settings. Special focus is given to cancer types with the most devastating impact on life expectancy that urgently call for novel therapies.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: found

          Cancer Statistics, 2017.

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the "epidemic of diagnosis." Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017;67:7-30. © 2017 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade

            The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers' tissue of origin.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015

                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                19 January 2021
                January 2021
                : 13
                : 2
                : 342
                Affiliations
                [1 ]German Cancer Research Center (DKFZ), Research Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; j.rommelaere@ 123456dkfz-heidelberg.de
                [2 ]German Cancer Research Center (DKFZ), Laboratory of Oncolytic-Virus-Immunotherapeutics (LOVIT), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; t.ferreira@ 123456dkfz-heidelberg.de (T.F.); c.bretscher@ 123456gmx.de (C.B.); antonio.marchini@ 123456lih.lu (A.M.)
                [3 ]Luxembourg Institute of Health (LIH), Laboratory of Oncolytic-Virus-Immunotherapeutics (LOVIT), 84 rue Val Fleuri, L-1526 Luxembourg, Luxembourg
                Author notes
                [* ]Correspondence: a.angelova@ 123456dkfz-heidelberg.de ; Tel.: +49-6221-42-4960
                Author information
                https://orcid.org/0000-0003-2349-0404
                https://orcid.org/0000-0001-5284-9127
                https://orcid.org/0000-0002-2614-2651
                https://orcid.org/0000-0003-3157-4552
                Article
                cancers-13-00342
                10.3390/cancers13020342
                7832409
                33477757
                6010c62f-0c6c-464e-bdae-877f82653f4a
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 December 2020
                : 15 January 2021
                Categories
                Review

                parvovirus,oncolytic,tumor microenvironment,immunotherapy,combination therapy,glioblastoma,pancreatic cancer,colorectal cancer,melanoma

                Comments

                Comment on this article