11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 10 7 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Nanostructuring of metals by severe plastic deformation for advanced properties.

          Despite rosy prospects, the use of nanostructured metals and alloys as advanced structural and functional materials has remained controversial until recently. Only in recent years has a breakthrough been outlined in this area, associated both with development of new routes for the fabrication of bulk nanostructured materials and with investigation of the fundamental mechanisms that lead to the new properties of these materials. Although a deep understanding of these mechanisms is still a topic of basic research, pilot commercial products for medicine and microdevices are coming within reach of the market. This progress article discusses new concepts and principles of using severe plastic deformation (SPD) to fabricate bulk nanostructured metals with advanced properties. Special emphasis is laid on the relationship between microstructural features and properties, as well as the first applications of SPD-produced nanomaterials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanostructural hierarchy increases the strength of aluminium alloys.

            Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary.

              High-angle grain boundaries are always the preferential fatigue cracking sites, while the intrinsic fatigue cracking mechanism of coherent twin boundary remains elusive. Here we systematically investigate the fatigue cracking behaviours of copper bicrystals with a coherent twin boundary as their sole internal boundary. It is found with direct experimental evidence for the first time that, unlike the random grain boundaries, the cracking behaviour of the twin boundary strongly depends on its orientation with respect to the loading direction. When the twin boundary is parallel or perpendicular to the loading direction, the fatigue cracks nucleate along the slip bands preferentially; when it is inclined at an angle to the loading direction, the fatigue crack is especially apt to nucleate along the twin boundary first. The controllable fatigue cracking mechanisms of the twin boundary may provide new and important implications for the optimized interfacial design of the high-performance materials.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 June 2016
                2016
                : 6
                : 27433
                Affiliations
                [1 ]Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , 72 Wenhua Road, Shenyang 110016, P.R. China
                [2 ]School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney , New South Wales 2006, Australia
                Author notes
                Article
                srep27433
                10.1038/srep27433
                4893737
                27264347
                602d7f48-3425-43ad-bfd5-ba1aa72f6ca7
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 02 March 2016
                : 19 May 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article