1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mediolateral footpath stabilization during walking in people following stroke

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Community dwelling stroke survivors most often fall while walking. Understanding how post-stroke individuals control mediolateral footpath during walking may help elucidate the mechanisms that contribute to walking instability. By applying the Uncontrolled Manifold (UCM) approach, we investigated (1) how post-stroke individuals coordinate lower-extremity joint motions to stabilize mediolateral footpath of the swing leg, and (2) how the inter-joint coordination in footpath stabilization correlates to their walking stability. Nine stroke subjects and nine healthy controls walked on a treadmill at four different speeds. UCM analysis partitions the variance of kinematic configurations across gait cycles into “good variance” (i.e., the variance component leading to a consistent footpath) or “bad variance” (i.e., the variance component leading to an inconsistent footpath). We found that both groups had a significantly greater “good” than “bad” variance (p<0.05) for most of the swing phase, suggesting that mediolateral footpath is an important variable stabilized by the central nervous system during walking. Stroke subjects had significantly greater relative variance difference (ΔV) (i.e. normalized difference between “good” and “bad” variance) (p<0.05), indicating a stronger kinematic synergy in footpath stabilization, than the controls. In addition, the kinematic synergy in mediolateral footpath stabilization is strongest during mid-swing but weakest during late swing in healthy gait. However, this phase-dependent strategy is preserved for mid-swing but not for late swing in stroke gait. Moreover, stroke and healthy subjects demonstrated different relationships between UCM and walking stability measures. A stronger kinematic synergy in healthy gait is associated with better walking stability whereas having more “good variance” or stronger kinematic synergy in stroke gait is associated with less walking stability. The current findings suggest that walking with too much “good variance” in people following stroke, despite no effect on the footpath, may adversely affect their walking stability to some extent.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Active control of lateral balance in human walking.

          We measured variability of foot placement during gait to test whether lateral balance must be actively controlled against dynamic instability. The hypothesis was developed using a simple dynamical model that can walk down a slight incline with a periodic gait resembling that of humans. This gait is entirely passive except that it requires active control for a single unstable mode, confined mainly to lateral motion. An especially efficient means of controlling this instability is to adjust lateral foot placement. We hypothesized that similar active feedback control is performed by humans, with fore-aft dynamics stabilized either passively or by very low-level control. The model predicts that uncertainty within the active feedback loop should result in variability in foot placement that is larger laterally than fore-aft. In addition, loss of sensory information such as by closing the eyes should result in larger increases in lateral variability. The control model also predicts a slight coupling between step width and length. We tested 15 young normal human subjects and found that lateral variability was 79% larger than fore-aft variability with eyes open, and a larger increase in lateral variability (53% vs. 21%) with eyes closed, consistent with the model's predictions. We also found that the coupling between lateral and fore-aft foot placements was consistent with a value of 0.13 predicted by the control model. Our results imply that humans may harness passive dynamic properties of the limbs in the sagittal plane, but must provide significant active control in order to stabilize lateral motion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical and metabolic requirements for active lateral stabilization in human walking.

            Walking appears to be passively unstable in the lateral direction, requiring active feedback control for stability. The central nervous system may control stability by adjusting medio-lateral foot placement, but potentially with a metabolic cost. This cost increases with narrow steps and may affect the preferred step width. We hypothesized that external stabilization of the body would reduce the active control needed, thereby decreasing metabolic cost and preferred step width. To test these hypotheses, we provided external lateral stabilization, using springs pulling bilaterally from the waist, to human subjects walking on a force treadmill at 1.25 m/s. Ten subjects walked, with and without stabilization, at a prescribed step width of zero and also at their preferred step width. We measured metabolic cost using indirect calorimetry, and step width from force treadmill data. We found that at the prescribed zero step width, external stabilization resulted in a 33% decrease in step width variability (root-mean-square) and a 9.2% decrease in metabolic cost. In the preferred step width conditions, external stabilization caused subjects to prefer a 47% narrower step width, with a 32% decrease in step width variability and a 5.7% decrease in metabolic cost. These results suggest that (a). human walking requires active lateral stabilization, (b). body lateral motion is partially stabilized via medio-lateral foot placement, (c). active stabilization exacts a modest metabolic cost, and (d). humans avoid narrow step widths because they are less stable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The uncontrolled manifold concept: identifying control variables for a functional task.

              The degrees of freedom problem is often posed by asking which of the many possible degrees of freedom does the nervous system control? By implication, other degrees of freedom are not controlled. We give an operational meaning to "controlled" and "uncontrolled" and describe a method of analysis through which hypotheses about controlled and uncontrolled degrees of freedom can be tested. In this conception, control refers to stabilization, so that lack of control implies reduced stability. The method was used to analyze an experiment on the sit-to-stand transition. By testing different hypotheses about the controlled variables, we systematically approximated the structure of control in joint space. We found that, for the task of sit-to-stand, the position of the center of mass in the sagittal plane was controlled. The horizontal head position and the position of the hand were controlled less stably, while vertical head position appears to be no more controlled than joint motions.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: Writing – original draftRole: Writing – review & editing
                Role: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                29 November 2018
                2018
                : 13
                : 11
                : e0208120
                Affiliations
                [1 ] Department of Physical Therapy, University of Massachusetts Lowell, Lowell, Massachusetts, United States of America
                [2 ] Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina, United States of America
                Nanyang Technological University, SINGAPORE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-8603-3898
                Article
                PONE-D-18-12802
                10.1371/journal.pone.0208120
                6264822
                30496257
                607cd16d-862e-49f0-a934-719505c9ff63
                © 2018 Kao, Srivastava

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 April 2018
                : 12 November 2018
                Page count
                Figures: 6, Tables: 1, Pages: 17
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Physiology
                Biological Locomotion
                Walking
                Medicine and Health Sciences
                Physiology
                Biological Locomotion
                Walking
                Physical Sciences
                Physics
                Classical Mechanics
                Kinematics
                Medicine and Health Sciences
                Neurology
                Cerebrovascular Diseases
                Stroke
                Medicine and Health Sciences
                Vascular Medicine
                Stroke
                Biology and Life Sciences
                Anatomy
                Musculoskeletal System
                Body Limbs
                Legs
                Feet
                Medicine and Health Sciences
                Anatomy
                Musculoskeletal System
                Body Limbs
                Legs
                Feet
                Biology and Life Sciences
                Anatomy
                Musculoskeletal System
                Body Limbs
                Legs
                Medicine and Health Sciences
                Anatomy
                Musculoskeletal System
                Body Limbs
                Legs
                Biology and Life Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Biology and Life Sciences
                Anatomy
                Nervous System
                Motor System
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Motor System
                Biology and Life Sciences
                Neuroscience
                Motor System
                Physical Sciences
                Physics
                Classical Mechanics
                Motion
                Velocity
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article