17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aquaporins Mediate Silicon Transport in Humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A silicon transporter in rice.

          Silicon is beneficial to plant growth and helps plants to overcome abiotic and biotic stresses by preventing lodging (falling over) and increasing resistance to pests and diseases, as well as other stresses. Silicon is essential for high and sustainable production of rice, but the molecular mechanism responsible for the uptake of silicon is unknown. Here we describe the Low silicon rice 1 (Lsi1) gene, which controls silicon accumulation in rice, a typical silicon-accumulating plant. This gene belongs to the aquaporin family and is constitutively expressed in the roots. Lsi1 is localized on the plasma membrane of the distal side of both exodermis and endodermis cells, where casparian strips are located. Suppression of Lsi1 expression resulted in reduced silicon uptake. Furthermore, expression of Lsi1 in Xenopus oocytes showed transport activity for silicon only. The identification of a silicon transporter provides both an insight into the silicon uptake system in plants, and a new strategy for producing crops with high resistance to multiple stresses by genetic modification of the root's silicon uptake capacity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aquaporin water channels in mammals.

            Water channels, aquaporins (AQPs), are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. There are 13 members (AQP0-12) in humans. This number is final as the human genome project has been completed. They are divided into three subgroups based on the primary sequences: water selective AQPs (AQP0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, 10), and superaquaporins (AQP11, 12). Since no specific inhibitors are yet available, functional roles of AQPs are suggested by AQP null mice and humans. Abnormal water metabolism was shown with AQP1, 2, 3, 4, 5 null mice, especially with AQP2 null mice: fatal at neonate due to diabetes insipidus. Abnormal glycerol transport was shown with AQP3, 7, 9 null mice, although they appeared normal. AQP0 null mice suffer from cataracts, although the pathogenesis is not clear. Unexpectedly, AQP11 null mice die from uremia as a result of polycystic kidneys. Interestingly, AQP6, 8, 10, 12 null mice are almost normal. AQP null humans have been reported with AQP0, 1, 2, 3, 7: only AQP2 null humans show an outstanding phenotype, diabetes insipidus. This review summarizes the current knowledge on all mammalian AQPs and hopefully will stimulate future research in both clinical and basic fields.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid gating and anion permeability of an intracellular aquaporin.

              Aquaporin (AQP) water-channel proteins are freely permeated by water but not by ions or charged solutes. Although mammalian aquaporins were believed to be located in plasma membranes, rat AQP6 is restricted to intracellular vesicles in renal epithelia. Here we show that AQP6 is functionally distinct from other known aquaporins. When expressed in Xenopus laevis oocytes, AQP6 exhibits low basal water permeability; however, when treated with the known water channel inhibitor, Hg2+, the water permeability of AQP6 oocytes rapidly rises up to tenfold and is accompanied by ion conductance. AQP6 colocalizes with H+-ATPase in intracellular vesicles of acid-secreting alpha-intercalated cells in renal collecting duct. At pH less than 5.5, anion conductance is rapidly and reversibly activated in AQP6 oocytes. Site-directed mutation of lysine to glutamate at position 72 in the cytoplasmic mouth of the pore changes the cation/anion selectivity, but leaves low pH activation intact. Our results demonstrate unusual biophysical properties of an aquaporin, and indicate that anion-channel function may now be explored in a protein with known structure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                27 August 2015
                2015
                : 10
                : 8
                : e0136149
                Affiliations
                [1 ]L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
                [2 ]Department of Phytology, Faculty of Sciences of Agriculture and Alimentation, Laval Université Laval, Québec City, Québec, Canada
                [3 ]Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
                University of Minho, PORTUGAL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: APG GAC AAM RFC CFS WRB LC MJW MN RB FC PI. Performed the experiments: APG GAC AAM RFC CFS WRB LC MJW MN FC. Analyzed the data: APG GAC AAM RFC CFS LC MJW MN FC PI. Contributed reagents/materials/analysis tools: RB JJP PI. Wrote the paper: APG PI.

                Article
                PONE-D-15-06990
                10.1371/journal.pone.0136149
                4551902
                26313002
                60a51cac-d9c0-42f7-afb8-7507e843afcf
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 14 February 2015
                : 31 July 2015
                Page count
                Figures: 5, Tables: 3, Pages: 15
                Funding
                Funding was provided by Canadian Institutes of Health Research, grant number FRN-84410.
                Categories
                Research Article
                Custom metadata

                Uncategorized
                Uncategorized

                Comments

                Comment on this article