17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence.

      Journal of Biology
      Animals, Cell Line, Humans, Interferon-alpha, immunology, pharmacology, Interferon-beta, Mice, Molecular Sequence Data, Phenotype, Phylogeny, Protein-Tyrosine Kinases, metabolism, STAT Transcription Factors, Signal Transduction, Virus Replication, drug effects, West Nile Fever, virology, West Nile virus, isolation & purification, pathogenicity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of West Nile virus (WNV) in the Western Hemisphere is marked by the spread of pathogenic lineage I strains, which differ from typically avirulent lineage II strains. To begin to understand the virus-host interactions that may influence the phenotypic properties of divergent lineage I and II viruses, we compared the genetic, pathogenic, and alpha/beta interferon (IFN-alpha/beta)-regulatory properties of a lineage II isolate from Madagascar (MAD78) with those of a new lineage I isolate from Texas (TX02). Full genome sequence analysis revealed that MAD78 clustered, albeit distantly, with other lineage II strains, while TX02 clustered with emergent North American isolates, more specifically with other Texas strains. Compared to TX02, MAD78 replicated at low levels in cultured human cells, was highly sensitive to the antiviral actions of IFN in vitro, and demonstrated a completely avirulent phenotype in wild-type mice. In contrast to TX02 and other pathogenic forms of WNV, MAD78 was defective in its ability to disrupt IFN-induced JAK-STAT signaling, including the activation of Tyk2 and downstream phosphorylation and nuclear translocation of STAT1 and STAT2. However, replication of MAD78 was rescued in cells with a nonfunctional IFN-alpha/beta receptor (IFNAR). Consistent with this finding, the virulence of MAD78 was unmasked upon infection of mice lacking IFNAR. Thus, control of the innate host response and IFN actions is a key feature of WNV pathogenesis and replication fitness.

          Related collections

          Author and article information

          Comments

          Comment on this article