15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conjugal DNA Transfer in Sodalis glossinidius, a Maternally Inherited Symbiont of Tsetse Flies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tsetse flies are the insect vectors of T. brucei, the causative agent of African sleeping sickness—a zoonotic disease that inflicts a substantial economic cost on a broad region of sub-Saharan Africa. Notably, tsetse flies can be infected with the bacterium S. glossinidius to establish an asymptomatic chronic infection. This infection can be inherited by future generations of tsetse flies, allowing S. glossinidius to spread and persist within populations. To this effect, S. glossinidius has been considered a potential expression platform to create flies which reduce T. brucei stasis and lower overall parasite transmission to humans and animals. However, the efficient genetic manipulation of S. glossinidius has remained a technical challenge due to its complex growth requirements and uncharacterized physiology. Here, we exploit a natural mechanism of DNA transfer among bacteria and develop an efficient technique to genetically manipulate S. glossinidius for future studies in reducing trypanosome transmission.

          ABSTRACT

          Stable associations between insects and bacterial species are widespread in nature. This is the case for many economically important insects, such as tsetse flies. Tsetse flies are the vectors of Trypanosoma brucei, the etiological agent of African trypanosomiasis—a zoonotic disease that incurs a high socioeconomic cost in regions of endemicity. Populations of tsetse flies are often infected with the bacterium Sodalis glossinidius. Following infection, S. glossinidius establishes a chronic, stable association characterized by vertical (maternal) and horizontal (paternal) modes of transmission. Due to the stable nature of this association, S. glossinidius has been long sought as a means for the implementation of anti- Trypanosoma paratransgenesis in tsetse flies. However, the lack of tools for the genetic modification of S. glossinidius has hindered progress in this area. Here, we establish that S. glossinidius is amenable to DNA uptake by conjugation. We show that conjugation can be used as a DNA delivery method to conduct forward and reverse genetic experiments in this bacterium. This study serves as an important step in the development of genetic tools for S. glossinidius. The methods highlighted here should guide the implementation of genetics for the study of the tsetse- Sodalis association and the evaluation of S. glossinidius-based tsetse fly paratransgenesis strategies.

          IMPORTANCE Tsetse flies are the insect vectors of T. brucei, the causative agent of African sleeping sickness—a zoonotic disease that inflicts a substantial economic cost on a broad region of sub-Saharan Africa. Notably, tsetse flies can be infected with the bacterium S. glossinidius to establish an asymptomatic chronic infection. This infection can be inherited by future generations of tsetse flies, allowing S. glossinidius to spread and persist within populations. To this effect, S. glossinidius has been considered a potential expression platform to create flies which reduce T. brucei stasis and lower overall parasite transmission to humans and animals. However, the efficient genetic manipulation of S. glossinidius has remained a technical challenge due to its complex growth requirements and uncharacterized physiology. Here, we exploit a natural mechanism of DNA transfer among bacteria and develop an efficient technique to genetically manipulate S. glossinidius for future studies in reducing trypanosome transmission.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.

          We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studies on transformation of Escherichia coli with plasmids.

            D Hanahan (1983)
            Factors that affect the probability of genetic transformation of Escherichia coli by plasmids have been evaluated. A set of conditions is described under which about one in every 400 plasmid molecules produces a transformed cell. These conditions include cell growth in medium containing elevated levels of Mg2+, and incubation of the cells at 0 degrees C in a solution of Mn2+, Ca2+, Rb+ or K+, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III). Transformation efficiency declines linearly with increasing plasmid size. Relaxed and supercoiled plasmids transform with similar probabilities. Non-transforming DNAs compete consistent with mass. No significant variation is observed between competing DNAs of different source, complexity, length or form. Competition with both transforming and non-transforming plasmids indicates that each cell is capable of taking up many DNA molecules, and that the establishment of a transformation event is neither helped nor hindered significantly by the presence of multiple plasmids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High efficiency transformation of E. coli by high voltage electroporation.

              E. coli can be transformed to extremely high efficiencies by subjecting a mixture of cells and DNA to brief but intense electrical fields of exponential decay waveform (electroporation). We have obtained 10(9) to 10(10) transformants/micrograms with strains LE392 and DH5 alpha, and plasmids pUC18 and pBR329. The process is highly dependent on two characteristics of the electrical pulse: the electric field strength and the pulse length (RC time constant). The frequency of transformation is a linear function of the DNA concentration over at least six orders of magnitude; and the efficiency of transformation is a function of the cell concentration. Most of the surviving cells are competent with up to 80% transformed at high DNA concentration. The mechanism does not appear to include binding of the DNA to the cells prior to entry. Possible mechanisms are discussed and a simple procedure for the practical use of this technique is presented.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSphere
                mSphere
                msph
                msph
                mSphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                4 November 2020
                Nov-Dec 2020
                : 5
                : 6
                : e00864-20
                Affiliations
                [a ]Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
                [b ]Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
                University of Wisconsin—Madison
                Author notes
                Address correspondence to Mauricio H. Pontes, mpontes@ 123456pennstatehealth.psu.edu .

                Citation Kendra CG, Keller CM, Bruna RE, Pontes MH. 2020. Conjugal DNA transfer in Sodalis glossinidius, a maternally inherited symbiont of tsetse flies. mSphere 5:e00864-20. https://doi.org/10.1128/mSphere.00864-20.

                Author information
                https://orcid.org/0000-0001-5614-9515
                https://orcid.org/0000-0002-8703-8727
                https://orcid.org/0000-0002-8900-9575
                https://orcid.org/0000-0002-2618-2039
                Article
                mSphere00864-20
                10.1128/mSphere.00864-20
                7643829
                33148821
                6106956a-506c-460f-bb65-1aeb942cca3e
                Copyright © 2020 Kendra et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 8 October 2020
                : 19 October 2020
                Page count
                supplementary-material: 5, Figures: 4, Tables: 1, Equations: 0, References: 67, Pages: 11, Words: 8129
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: AI148774
                Award Recipient :
                Categories
                Resource Report
                Applied and Environmental Science
                Custom metadata
                November/December 2020

                sodalis glossinidius,insect endosymbiont,symbiont,transformation,conjugation,genetic modification,plasmid transfer,transposition,gene disruption,mutation,paratransgenesis,trypanosoma brucei

                Comments

                Comment on this article