5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy

      1 , 2 , 2
      Circulation Research
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthracycline-based chemotherapy can result in the development of a cumulative and progressively developing cardiomyopathy. Doxorubicin is one of the most highly prescribed anthracyclines in the United States due to its broad spectrum of therapeutic efficacy. Interference with different mitochondrial processes is chief among the molecular and cellular determinants of doxorubicin cardiotoxicity, contributing to the development of cardiomyopathy. The present review provides the basis for the involvement of mitochondrial toxicity in the different functional hallmarks of anthracycline toxicity. Our objective is to understand the molecular determinants of a progressive deterioration of functional integrity of mitochondria that establishes a historic record of past drug treatments (mitochondrial memory) and renders the cancer patient susceptible to subsequent regimens of drug therapy. We focus on the involvement of doxorubicin-induced mitochondrial oxidative stress, disruption of mitochondrial oxidative phosphorylation, and permeability transition, contributing to altered metabolic and redox circuits in cardiac cells, ultimately culminating in disturbances of autophagy/mitophagy fluxes and increased apoptosis. We also suggest some possible pharmacological and nonpharmacological interventions that can reduce mitochondrial damage. Understanding the key role of mitochondria in doxorubicin-induced cardiomyopathy is essential to reduce the barriers that so dramatically limit the clinical success of this essential anticancer chemotherapy.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The anthracyclines: will we ever find a better doxorubicin?

          The anthracyclines are the class of antitumor drugs with the widest spectrum of activity in human cancers, and only a few cancers (eg, colon cancer) are unresponsive to them. The first two anthracyclines were developed in the 1960s. Doxorubicin (DOX) differs from daunorubicin (DNR) only by a single hydroxyl group. This fact has spurred researchers worldwide to find analogs of DOX that have less acute toxicity, cause less cardiomyopathy, can be administered orally, and/or have different, or greater, antitumor efficacy. Five DOX/DNR analogs are marketed in other countries, and one (idarubicin) is available in the United States. None of these analogs have stronger antitumor efficacy than the original two anthracyclines, but there are some differences in toxicity. Methods have been fashioned to keep the peak plasma level of DOX muted to minimize cardiotoxicity, but the only apparently effective method available so far (prolonged drug infusion) is cumbersome. The bisoxopiperazine class of drugs (especially dexrazoxane) provides protection against anthracycline-induced cardiomyopathy and has much promise for helping mitigate this major obstacle to prolonged use of the anthracyclines. The DOX analogs being evaluated in the 1990s have been selected for their ability to overcome multidrug resistance in cancer cells. Thirty years after discovery of the anticancer activity of the first anthracycline, some means of reducing anthracycline toxicity have been devised. Current studies are evaluating increased doses of epirubicin to improve anthracycline cytotoxicity, while limiting cardiotoxicity, but at present DOX still reigns in this drug class as the one having the most proven cancerocidal effect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio.

            There have been very few investigations as to whether mitochondrial-mediated apoptosis in vivo is the underlying mechanism of doxorubicin cardiotoxicity. Moreover, no investigations have been conducted to determine whether there are adaptive responses after doxorubicin treatment. We administered a single dose of doxorubicin (20 mg/kg) to male rats and isolated intact mitochondria from their hearts 4 days later. Apoptosis, as determined by the amount of cytosolic mononucleosomal and oligonucleosomal DNA fragments (180 bp or multiples), was significantly increased after doxorubicin treatment. In contrast, Troponin-T, a cardiac-specific marker for necrotic damage, was unaltered 4 days after doxorubicin treatment. Cytosolic cytochrome c increased 2-fold in the doxorubicin-treated rats and was significantly correlated (r = 0.88; P < 0.01) with the increase in caspase-3 activity observed. Moreover, the level of bleomyocin-detectable iron in serum was significantly increased and may have contributed to the increase in oxidative stress, which was indicated by an increase in cytosolic 8-iso prostaglandin F(2alpha). Cytosolic copper zinc superoxide dismutase activity also increased significantly further supporting the notion that doxorubicin increases superoxide radical production. In addition to adaptations to antioxidant defenses, other adaptive mechanisms occurred in the mitochondria such as an increase in the respiratory P/O ratio and an increase in the Bcl-2:Bax ratio. These findings demonstrate that doxorubicin induces oxidative stress and mitochondrial-mediated apoptosis, as well as adaptive responses by the mitochondria to protect cardiac myocytes in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.

              In the accompanying paper (Davies, K. J. A., and Doroshow, J. A. (1986) J. Biol. Chem. 261, 3060-3067), we have demonstrated that anthracycline antibiotics are reduced to the semiquinone form at Complex I of the mitochondrial electron transport chain. In the experiments presented in this study we examined the effects of doxorubicin (Adriamycin), daunorubicin, and related quinonoid anticancer agents on superoxide, hydrogen peroxide, and hydroxyl radical production by preparations of beef heart submitochondrial particles. Superoxide anion formation was stimulated from (mean +/- S.E.) 1.6 +/- 0.2 to 69.6 +/- 2.7 or 32.1 +/- 1.5 nmol X min-1 X mg-1 by the addition of 90 microM doxorubicin or daunorubicin, respectively. However, the anthracycline 5-iminodaunorubicin, in which an imine group has been substituted in the C ring quinone moiety, did not increase superoxide production over control levels. In the presence of rotenone, initial rates of oxygen consumption and superoxide formation were identical under comparable experimental conditions. Furthermore, H2O2 production increased from undetectable control levels to 2.2 +/- 0.3 nmol X min-1 X mg-1 after treatment of submitochondrial particles with doxorubicin (200 microM). The hydroxyl radical, or a related chemical oxidant, was also detected after the addition of an anthracycline to this system by both ESR spectroscopy using the spin trap 5,5-dimethylpyrroline-N-oxide and by gas chromatographic quantitation of CH4 produced from dimethyl sulfoxide. Hydroxyl radical production, which was iron-dependent in this system, occurred in a nonlinear fashion with an initial lag phase due to a requirement for H2O2 accumulation. We also found that two quinonoid anti-cancer agents which produce less cardiotoxicity than the anthracyclines, mitomycin C, and mitoxantrone, stimulated significantly less or no hydroxyl radical production by submitochondrial particles. These experiments suggest that injury to cardiac mitochondria which is produced by anthracycline antibiotics may result from the generation of the hydroxyl radical during anthracycline metabolism by NADH dehydrogenase.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Circulation Research
                Circ Res
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                March 27 2020
                March 27 2020
                : 126
                : 7
                : 926-941
                Affiliations
                [1 ]From the Department of Biomedical Sciences, University of Minnesota Medical School, Duluth (K.B.W.)
                [2 ]CNC – Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.).
                Article
                10.1161/CIRCRESAHA.119.314681
                7121924
                32213135
                61a0b97f-b07e-4a97-9734-082bbd72cb44
                © 2020
                History

                Comments

                Comment on this article