64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.

          Author Summary

          Over the past few years, there has been an unprecedented increase in the use of microorganisms for the production of biofuels, industrial chemicals and pharmaceutical precursors. In this regard, biotechnologists are confronted with the challenge to efficiently convert biomass and other renewable resources into useful biochemicals. With the advent of organism-specific mathematical models of metabolism, scientists have used computations to identify genetic modifications that maximize the yield of a desired product. In this paper, we introduce OptForce, an algorithm that identifies all possible metabolic interventions that lead to the overproduction of a biochemical of interest. Unlike existing techniques, OptForce does not rely on the maximization of a fitness function to predict metabolic fluxes. Instead, OptForce contrasts the metabolic flux patterns observed in an initial strain and a strain overproducing the chemical at the target yield. The essence of this procedure is the identification of all coordinated reaction modifications that force the network towards the overproduction target. We used OptForce to predict metabolic interventions for succinate overproduction in Escherichia coli. The results described in this paper not only uncover existing strain designs for succinate production but also elucidate new ones that can be experimentally explored.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

          An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

            Genome-scale constraint-based models of several organisms have now been constructed and are being used for model driven research. A key issue that may arise in the use of such models is the existence of alternate optimal solutions wherein the same maximal objective (e.g., growth rate) can be achieved through different flux distributions. Herein, we investigate the effects that alternate optimal solutions may have on the predicted range of flux values calculated using currently practiced linear (LP) and quadratic programming (QP) methods. An efficient LP-based strategy is described to calculate the range of flux variability that can be present in order to achieve optimal as well as suboptimal objective states. Sample results are provided for growth predictions of E. coli using glucose, acetate, and lactate as carbon substrates. These results demonstrate the extent of flux variability to be highly dependent on environmental conditions and network composition. In addition we examined the impact of alternate optima for growth under gene knockout conditions as calculated using QP-based methods. It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high. The underlying biological significance and general source of such flux variability is further investigated through the identification of redundancies in the network (equivalent reaction sets) that lead to alternate solutions. Collectively, these results illustrate the variability inherent in metabolic flux distributions and the possible implications of this heterogeneity for constraint-based modeling approaches. These methods also provide an efficient and robust method to calculate the range of flux distributions that can be derived from quantitative fermentation data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of optimality in natural and perturbed metabolic networks.

              An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2010
                April 2010
                15 April 2010
                : 6
                : 4
                : e1000744
                Affiliations
                [1 ]Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
                [2 ]Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
                University of Illinois at Urbana-Champaign, United States of America
                Author notes

                Conceived and designed the experiments: SR CDM. Performed the experiments: SR. Analyzed the data: SR CDM. Contributed reagents/materials/analysis tools: SR PFS CDM. Wrote the paper: SR CDM.

                Article
                09-PLCB-RA-1098R3
                10.1371/journal.pcbi.1000744
                2855329
                20419153
                61f9819a-0aee-4cc7-b117-d3b6d46e83d9
                Ranganathan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 September 2009
                : 16 March 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Biochemistry/Bioinformatics
                Biotechnology/Bioengineering
                Computational Biology/Metabolic Networks
                Computational Biology/Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article