60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Argon: Neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Recently, it has been shown in several experimental settings that the noble gases xenon and helium have neuroprotective properties. In this study we tested the hypothesis that the noble gas argon has a neuroprotective potential as well. Since traumatic brain injury and stroke are widespread and generate an enormous economic and social burden, we investigated the possible neuroprotective effect in in vitro models of traumatic brain injury and cerebral ischemia.

          Methods

          Organotypic hippocampal slice cultures from mice pups were subjected to either oxygen-glucose deprivation or to a focal mechanical trauma and subsequently treated with three different concentrations (25, 50 and 74%) of argon immediately after trauma or with a two-or-three-hour delay. After 72 hours of incubation tissue injury assessment was performed using propidium iodide, a staining agent that becomes fluorescent when it diffuses into damaged cells via disintegrated cell membranes.

          Results

          We could show argon's neuroprotective effects at different concentrations when applied directly after oxygen-glucose deprivation or trauma. Even three hours after application, argon was still neuroprotective.

          Conclusions

          Argon showed a neuroprotective effect in both in vitro models of oxygen-glucose deprivation and traumatic brain injury. Our promising results justify further in vivo animal research.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          A simple method for organotypic cultures of nervous tissue.

          Hippocampal slices prepared from 2-23-day-old neonates were maintained in culture at the interface between air and a culture medium. They were placed on a sterile, transparent and porous membrane and kept in petri dishes in an incubator. No plasma clot or roller drum were used. This method yields thin slices which remain 1-4 cell layers thick and are characterized by a well preserved organotypic organization. Pyramidal neurons labelled by extra- and intracellular application of horse radish peroxidase resemble by the organization and complexity of their dendritic processes those observed in situ at a comparable developmental stage. Excitatory and inhibitory synaptic potentials can easily be analysed using extra- or intracellular recording techniques. After a few days in culture, long-term potentiation of synaptic responses can reproducibly be induced. Evidence for a sprouting response during the first days in culture or following sections is illustrated. This technique may represent an interesting alternative to roller tube cultures for studies of the developmental changes occurring during the first days or weeks in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Traumatic brain injury in the United States: A public health perspective.

            Traumatic brain injury (TBI) is a leading cause of death and disability among persons in the United States. Each year, an estimated 1.5 million Americans sustain a TBI. As a result of these injuries, 50,000 people die, 230,000 people are hospitalized and survive, and an estimated 80,000-90,000 people experience the onset of long-term disability. Rates of TBI-related hospitalization have declined nearly 50% since 1980, a phenomenon that may be attributed, in part, to successes in injury prevention and also to changes in hospital admission practices that shift the care of persons with less severe TBI from inpatient to outpatient settings. The magnitude of TBI in the United States requires public health measures to prevent these injuries and to improve their consequences. State surveillance systems can provide reliable data on injury causes and risk factors, identify trends in TBI incidence, enable the development of cause-specific prevention strategies focused on populations at greatest risk, and monitor the effectiveness of such programs. State follow-up registries, built on surveillance systems, can provide more information regarding the frequency and nature of disabilities associated with TBI. This information can help states and communities to design, implement, and evaluate cost-effective programs for people living with TBI and for their families, addressing acute care, rehabilitation, and vocational, school, and community support.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organotypic slice cultures: a technique has come of age.

              B Gahwiler (1997)
              Slices of CNS tissue prepared from young rodents can be maintained in culture for many weeks to months. The basic requirements are simple: a stable substratum, culture medium, sufficient oxygenation and incubation at a temperature of about 36 degrees C. Under these conditions, nerve cells continue to differentiate and to develop a tissue organization that closely resembles that observed in situ. Several alternative culturing methods have been developed recently. Slices maintained in stationary culture with the interface method are ideally suited for questions requiring a three-dimensional structure, whereas slices cultured in roller-tubes remain the method of choice for experiments that require optimal optical conditions. In this report, three typical experiments are discussed that illustrate the potential of the slice-culture technique. The first example indicates that, due to their high neuronal connectivity, slice cultures provide a very useful tool for studying the properties of synaptic transmission between monosynaptically coupled cell pairs. The other two studies show how long-term application of substances to slice cultures can be used to examine the consequences of epileptic discharges in vitro, as well as the effects of slowly acting clostridial neurotoxins on synaptic transmission.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2009
                17 December 2009
                : 13
                : 6
                : R206
                Affiliations
                [1 ]Department of Anesthesiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
                [2 ]Institute of Neuropathology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
                [3 ]Department of Surgical Intensive Care, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
                [4 ]Department of Neurosurgery, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
                Article
                cc8214
                10.1186/cc8214
                2811924
                20017934
                62ada810-7532-425c-853b-15054912d5e8
                Copyright ©2009 Loetscher et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 October 2009
                : 12 November 2009
                : 23 November 2009
                : 17 December 2009
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article