57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia-reperfusion injury (IRI) during renal transplantation often initiates non-specific inflammatory responses that can result in the loss of kidney graft viability. However, the long-term consequence of IRI on renal grafts survival is uncertain. Here we review clinical evidence and laboratory studies, and elucidate the association between early IRI and later graft loss. Our critical analysis of previous publications indicates that early IRI does contribute to later graft loss through reduction of renal functional mass, graft vascular injury, and chronic hypoxia, as well as subsequent fibrosis. IRI is also known to induce kidney allograft dysfunction and acute rejection, reducing graft survival. Therefore, attempts have been made to substitute traditional preserving solutions with novel agents, yielding promising results.

          Highlights

          • Ischaemia reperfusion injury (IRI) potentiates delayed renal graft function and causes reduction in renal graft survival

          • IRI causes innate immune system activation, hypoxic injury, inflammation and graft vascular disease

          • Reducing prolonged cold ischaemic time improves graft survival

          • Novel protective strategies include mesenchymal stem cells, machine perfusion, and ex vivo preservation solution saturated with gas.

          • Further studies are needed to investigate the long-term effects of novel ex vivo preservation agents

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.

          Recent studies emphasize the role of chronic hypoxia in the tubulointerstitium as a final common pathway to end-stage renal failure. When advanced, tubulointerstitial damage is associated with the loss of peritubular capillaries. Associated interstitial fibrosis impairs oxygen diffusion and supply to tubular and interstitial cells. Hypoxia of tubular cells leads to apoptosis or epithelial-mesenchymal transdifferentiation. This in turn exacerbates fibrosis of the kidney and subsequent chronic hypoxia, setting in train a vicious cycle whose end point is ESRD. A number of mechanisms that induce tubulointerstitial hypoxia at an early stage have been identified. Glomerular injury and vasoconstriction of efferent arterioles as a result of imbalances in vasoactive substances decrease postglomerular peritubular capillary blood flow. Angiotensin II not only constricts efferent arterioles but, via its induction of oxidative stress, also hampers the efficient utilization of oxygen in tubular cells. Relative hypoxia in the kidney also results from increased metabolic demand in tubular cells. Furthermore, renal anemia hinders oxygen delivery. These factors can affect the kidney before the appearance of significant pathologic changes in the vasculature and predispose the kidney to tubulointerstitial injury. Therapeutic approaches that target the chronic hypoxia should prove effective against a broad range of renal diseases. Current modalities include the improvement of anemia with erythropoietin, the preservation of peritubular capillary blood flow by blockade of the renin-angiotensin system, and the use of antioxidants. Recent studies have elucidated the mechanism of hypoxia-induced transcription, namely that prolyl hydroxylase regulates hypoxia-inducible factor. This has given hope for the development of novel therapeutic approaches against this final common pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.

            Severe acute renal failure (ARF) remains a common, largely treatment-resistant clinical problem with disturbingly high mortality rates. Therefore, we tested whether administration of multipotent mesenchymal stem cells (MSC) to anesthetized rats with ischemia-reperfusion-induced ARF (40-min bilateral renal pedicle clamping) could improve the outcome through amelioration of inflammatory, vascular, and apoptotic/necrotic manifestations of ischemic kidney injury. Accordingly, intracarotid administration of MSC (approximately 10(6)/animal) either immediately or 24 h after renal ischemia resulted in significantly improved renal function, higher proliferative and lower apoptotic indexes, as well as lower renal injury and unchanged leukocyte infiltration scores. Such renoprotection was not obtained with syngeneic fibroblasts. Using in vivo two-photon laser confocal microscopy, fluorescence-labeled MSC were detected early after injection in glomeruli, and low numbers attached at microvasculature sites. However, within 3 days of administration, none of the administered MSC had differentiated into a tubular or endothelial cell phenotype. At 24 h after injury, expression of proinflammatory cytokines IL-1beta, TNF-alpha, IFN-gamma, and inducible nitric oxide synthase was significantly reduced and that of anti-inflammatory IL-10 and bFGF, TGF-alpha, and Bcl-2 was highly upregulated in treated kidneys. We conclude that the early, highly significant renoprotection obtained with MSC is of considerable therapeutic promise for the cell-based management of clinical ARF. The beneficial effects of MSC are primarily mediated via complex paracrine actions and not by their differentiation into target cells, which, as such, appears to be a more protracted response that may become important in late-stage organ repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

              Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                02 February 2018
                February 2018
                02 February 2018
                : 28
                : 31-42
                Affiliations
                [a ]Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
                [b ]Brunel University London, Uxbridge, Middlesex, UK
                Author notes
                [* ]Corresponding author at: Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea and Westminster Hospital369 Fulham RoadLondonSW10 9NHUK d.ma@ 123456imperial.ac.uk
                Article
                S2352-3964(18)30026-4
                10.1016/j.ebiom.2018.01.025
                5835570
                29398595
                03d67841-80b4-40f3-af4b-ddda62590bc6
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 December 2017
                : 18 January 2018
                : 20 January 2018
                Categories
                Review

                iri, ischemia-reperfusion injury,mmp, matrix metalloproteinases,damp, damage associated molecular pattern,mhc, major histocompatibility complex,il-1, interleukine-1,ischemia-reperfusion,graft survival,renal transplantation,acute rejection,th cells: t helper cells

                Comments

                Comment on this article