1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The contribution of alternative splicing to genetic risk for psychiatric disorders

      1 , 2 , 3 , 1 , 2 , 1 , 2 , 3 , 4 , 5
      Genes, Brain and Behavior
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Biological Insights From 108 Schizophrenia-Associated Genetic Loci

            Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.

              (2015)
              Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA sequencing data from 1641 samples across 43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants, describe complex network relationships, and identify signals from genome-wide association studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological consequences of human genetic variation and of the heterogeneity of such effects among a diverse set of human tissues. Copyright © 2015, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Genes, Brain and Behavior
                Genes, Brain and Behavior
                Wiley
                16011848
                March 2018
                March 2018
                December 06 2017
                : 17
                : 3
                : e12430
                Affiliations
                [1 ]Genetics and Development Division, Krembil Research Institute; University Health Network; Toronto Ontario Canada
                [2 ]Program in Neurosciences and Mental Health; The Hospital for Sick Children; Toronto Ontario Canada
                [3 ]Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
                [4 ]Department of Psychiatry; University of Toronto; Toronto Ontario Canada
                [5 ]Department of Physiology; University of Toronto; Toronto Ontario Canada
                Article
                10.1111/gbb.12430
                62b0d491-8db5-4390-a3a3-a23120d3806b
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article