3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mussel-inspired sandwich-like nanofibers/hydrogel composite with super adhesive, sustained drug release and anti-infection capacity

      , , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

            Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing.

              Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                November 2020
                November 2020
                : 399
                : 125668
                Article
                10.1016/j.cej.2020.125668
                62dd8665-5e9a-4274-b11d-47e39054daea
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article