19
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunobiology of Newcastle Disease Virus and Its Use for Prophylactic Vaccination in Poultry and as Adjuvant for Therapeutic Vaccination in Cancer Patients

      review-article
      International Journal of Molecular Sciences
      MDPI
      cancer vaccine, dsRNA, EBOV, HN, ICD, interferon, immune escape, NDV, RIG-I, V protein

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Newcastle disease (ND) is one of the most important diseases of poultry worldwide. In the last decades, molecular research has gained a lot of new information about its causative agent, newcastle disease virus (NDV). In poultry industry, certain strains of NDV have been used for preventive vaccination for more than 60 years. NDV has also been applied to cancer patients with beneficial effects for about 50 years, but this is less well known. The molecular basis for these differential effects of NDV in birds and man have been elucidated in the last decades and are explained in this review. The anti-neoplastic and immune-stimulatory properties in non-permissive hosts such as mouse and man have to do with the strong type I interferon responses induced in these foreign species. Additionally, NDV has the potential to break various types of tumor resistances and also to affect liver fibrosis. A main section is devoted to the benefits of clinical application of NDV and NDV-based vaccines to cancer patients. Reverse genetics technology allowed developing NDV into a vector suitable for gene therapy. Examples will be provided in which genetically engineered NDV is being used successfully as vector against new emerging viruses.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.

            Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Taxonomy of the order Mononegavirales: update 2016.

              In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 May 2017
                May 2017
                : 18
                : 5
                : 1103
                Affiliations
                Immunological and Oncological Center Cologne (IOZK), Hohenstaufenring 30-32, D-50674 Köln, Germany; V.Schirrmacher@ 123456web.de ; Tel.: +49-221-4203-9925; Fax: +49-221-4203-9926
                Article
                ijms-18-01103
                10.3390/ijms18051103
                5455011
                28531117
                6311b9fb-33f3-4c89-84a1-dc6ac7f2dd4f
                © 2017 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 April 2017
                : 09 May 2017
                Categories
                Review

                Molecular biology
                cancer vaccine,dsrna,ebov,hn,icd,interferon,immune escape,ndv,rig-i,v protein
                Molecular biology
                cancer vaccine, dsrna, ebov, hn, icd, interferon, immune escape, ndv, rig-i, v protein

                Comments

                Comment on this article