6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Five strategies for clinicians to advance diagnostic excellence

      , ,
      BMJ
      BMJ

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnostic error in medicine: analysis of 583 physician-reported errors.

          Missed or delayed diagnoses are a common but understudied area in patient safety research. To better understand the types, causes, and prevention of such errors, we surveyed clinicians to solicit perceived cases of missed and delayed diagnoses. A 6-item written survey was administered at 20 grand rounds presentations across the United States and by mail at 2 collaborating institutions. Respondents were asked to report 3 cases of diagnostic errors and to describe their perceived causes, seriousness, and frequency. A total of 669 cases were reported by 310 clinicians from 22 institutions. After cases without diagnostic errors or lacking sufficient details were excluded, 583 remained. Of these, 162 errors (28%) were rated as major, 241 (41%) as moderate, and 180 (31%) as minor or insignificant. The most common missed or delayed diagnoses were pulmonary embolism (26 cases [4.5% of total]), drug reactions or overdose (26 cases [4.5%]), lung cancer (23 cases [3.9%]), colorectal cancer (19 cases [3.3%]), acute coronary syndrome (18 cases [3.1%]), breast cancer (18 cases [3.1%]), and stroke (15 cases [2.6%]). Errors occurred most frequently in the testing phase (failure to order, report, and follow-up laboratory results) (44%), followed by clinician assessment errors (failure to consider and overweighing competing diagnosis) (32%), history taking (10%), physical examination (10%), and referral or consultation errors and delays (3%). Physicians readily recalled multiple cases of diagnostic errors and were willing to share their experiences. Using a new taxonomy tool and aggregating cases by diagnosis and error type revealed patterns of diagnostic failures that suggested areas for improvement. Systematic solicitation and analysis of such errors can identify potential preventive strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diagnostic error in internal medicine.

            The goal of this study was to determine the relative contribution of system-related and cognitive components to diagnostic error and to develop a comprehensive working taxonomy. One hundred cases of diagnostic error involving internists were identified through autopsy discrepancies, quality assurance activities, and voluntary reports. Each case was evaluated to identify system-related and cognitive factors underlying error using record reviews and, if possible, provider interviews. Ninety cases involved injury, including 33 deaths. The underlying contributions to error fell into 3 natural categories: "no fault," system-related, and cognitive. Seven cases reflected no-fault errors alone. In the remaining 93 cases, we identified 548 different system-related or cognitive factors (5.9 per case). System-related factors contributed to the diagnostic error in 65% of the cases and cognitive factors in 74%. The most common system-related factors involved problems with policies and procedures, inefficient processes, teamwork, and communication. The most common cognitive problems involved faulty synthesis. Premature closure, ie, the failure to continue considering reasonable alternatives after an initial diagnosis was reached, was the single most common cause. Other common causes included faulty context generation, misjudging the salience of findings, faulty perception, and errors arising from the use of heuristics. Faulty or inadequate knowledge was uncommon. Diagnostic error is commonly multifactorial in origin, typically involving both system-related and cognitive factors. The results identify the dominant problems that should be targeted for additional research and early reduction; they also further the development of a comprehensive taxonomy for classifying diagnostic errors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Investigating sources of inaccuracy in wearable optical heart rate sensors

              As wearable technologies are being increasingly used for clinical research and healthcare, it is critical to understand their accuracy and determine how measurement errors may affect research conclusions and impact healthcare decision-making. Accuracy of wearable technologies has been a hotly debated topic in both the research and popular science literature. Currently, wearable technology companies are responsible for assessing and reporting the accuracy of their products, but little information about the evaluation method is made publicly available. Heart rate measurements from wearables are derived from photoplethysmography (PPG), an optical method for measuring changes in blood volume under the skin. Potential inaccuracies in PPG stem from three major areas, includes (1) diverse skin types, (2) motion artifacts, and (3) signal crossover. To date, no study has systematically explored the accuracy of wearables across the full range of skin tones. Here, we explored heart rate and PPG data from consumer- and research-grade wearables under multiple circumstances to test whether and to what extent these inaccuracies exist. We saw no statistically significant difference in accuracy across skin tones, but we saw significant differences between devices, and between activity types, notably, that absolute error during activity was, on average, 30% higher than during rest. Our conclusions indicate that different wearables are all reasonably accurate at resting and prolonged elevated heart rate, but that differences exist between devices in responding to changes in activity. This has implications for researchers, clinicians, and consumers in drawing study conclusions, combining study results, and making health-related decisions using these devices.
                Bookmark

                Author and article information

                Journal
                BMJ
                BMJ
                BMJ
                1756-1833
                February 16 2022
                : e068044
                Article
                10.1136/bmj-2021-068044
                35172968
                6313bd43-4cc6-4a5c-a9b4-e541ef779cd4
                © 2022

                http://www.bmj.com/company/legal-information/terms-conditions/legal-information/tdm-licencepolicy

                History

                Comments

                Comment on this article