43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chemokine CXCL12 and its G-protein-coupled receptor CXCR4 control the migration, invasiveness and metastasis of breast cancer cells. Binding of CXCL12 to CXCR4 triggers activation of heterotrimeric Gi proteins that regulate actin polymerization and migration. However, the pathways linking chemokine G-protein-coupled receptor/Gi signalling to actin polymerization and cancer cell migration are not known. Here we show that CXCL12 stimulation promotes interaction between Gαi2 and ELMO1. Gi signalling and ELMO1 are both required for CXCL12-mediated actin polymerization, migration and invasion of breast cancer cells. CXCL12 triggers a Gαi2-dependent membrane translocation of ELMO1, which associates with Dock180 to activate small G-proteins Rac1 and Rac2. In vivo, ELMO1 expression is associated with lymph node and distant metastasis, and knocking down ELMO1 impairs metastasis to the lung. Our findings indicate that a chemokine-controlled pathway, consisting of Gαi2, ELMO1/Dock180, Rac1 and Rac2, regulates the actin cytoskeleton during breast cancer metastasis.

          Abstract

          Chemokines promote breast cancer metastasis by stimulating re-organization of the actin cytoskeleton. Li et al. identify the human engulfment and cell motility protein ELMO1 as an intermediary between chemokine-dependent Gαi2 signalling and small GTPase signalling mediated by Rac.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular motility driven by assembly and disassembly of actin filaments.

          Motile cells extend a leading edge by assembling a branched network of actin filaments that produces physical force as the polymers grow beneath the plasma membrane. A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion. Signaling pathways converging on WASp/Scar proteins regulate the activity of Arp2/3 complex, which mediates the initiation of new filaments as branches on preexisting filaments. After a brief spurt of growth, capping protein terminates the elongation of the filaments. After filaments have aged by hydrolysis of their bound ATP and dissociation of the gamma phosphate, ADF/cofilin proteins promote debranching and depolymerization. Profilin catalyzes the exchange of ADP for ATP, refilling the pool of ATP-actin monomers bound to profilin, ready for elongation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemotaxis: signalling the way forward.

            During random locomotion, human neutrophils and Dictyostelium discoideum amoebae repeatedly extend and retract cytoplasmic processes. During directed cell migration--chemotaxis--these pseudopodia form predominantly at the leading edge in response to the local accumulation of certain signalling molecules. Concurrent changes in actin and myosin enable the cell to move towards the stimulus. Recent studies are beginning to identify an intricate network of signalling molecules that mediate these processes, and how these molecules become localized in the cell is now becoming clear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex.

              Mammalian Dock180 and ELMO proteins, and their homologues in Caenorhabditis elegans and Drosophila melanogaster, function as critical upstream regulators of Rac during development and cell migration. The mechanism by which Dock180 or ELMO mediates Rac activation is not understood. Here, we identify a domain within Dock180 (denoted Docker) that specifically recognizes nucleotide-free Rac and can mediate GTP loading of Rac in vitro. The Docker domain is conserved among known Dock180 family members in metazoans and in a yeast protein. In cells, binding of Dock180 to Rac alone is insufficient for GTP loading, and a Dock180 ELMO1 interaction is required. We can also detect a trimeric ELMO1 Dock180 Rac1 complex and ELMO augments the interaction between Dock180 and Rac. We propose that the Dock180 ELMO complex functions as an unconventional two-part exchange factor for Rac.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                16 April 2013
                : 4
                : 1706
                Affiliations
                [1 ]Tianjin Medical University Cancer Institute and Hospital and Research Center of Basic Medical Sciences , Lab B, Floor 6, Building C, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, China
                [2 ]Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Room 235, Twinbrook II, Rockville, Maryland 20852, USA
                [3 ]Beichen Hospital , Guoyuanxincun Street, Beichen District, Tianjin 300400, China
                Author notes
                Article
                ncomms2680
                10.1038/ncomms2680
                3644068
                23591873
                63237f8b-5ef7-4119-8003-0506929041c0
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 18 December 2012
                : 28 February 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article