35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding less phase-dependent sensory processing and motor planning, as opposed to walking.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-band oscillations, attention, and controlled access to stored information

          Alpha-band oscillations are the dominant oscillations in the human brain and recent evidence suggests that they have an inhibitory function. Nonetheless, there is little doubt that alpha-band oscillations also play an active role in information processing. In this article, I suggest that alpha-band oscillations have two roles (inhibition and timing) that are closely linked to two fundamental functions of attention (suppression and selection), which enable controlled knowledge access and semantic orientation (the ability to be consciously oriented in time, space, and context). As such, alpha-band oscillations reflect one of the most basic cognitive processes and can also be shown to play a key role in the coalescence of brain activity in different frequencies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Filtering the surface EMG signal: Movement artifact and baseline noise contamination.

            The surface electromyographic (sEMG) signal that originates in the muscle is inevitably contaminated by various noise signals or artifacts that originate at the skin-electrode interface, in the electronics that amplifies the signals, and in external sources. Modern technology is substantially immune to some of these noises, but not to the baseline noise and the movement artifact noise. These noise sources have frequency spectra that contaminate the low-frequency part of the sEMG frequency spectrum. There are many factors which must be taken into consideration when determining the appropriate filter specifications to remove these artifacts; they include the muscle tested and type of contraction, the sensor configuration, and specific noise source. The band-pass determination is always a compromise between (a) reducing noise and artifact contamination, and (b) preserving the desired information from the sEMG signal. This study was designed to investigate the effects of mechanical perturbations and noise that are typically encountered during sEMG recordings in clinical and related applications. The analysis established the relationship between the attenuation rates of the movement artifact and the sEMG signal as a function of the filter band pass. When this relationship is combined with other considerations related to the informational content of the signal, the signal distortion of filters, and the kinds of artifacts evaluated in this study, a Butterworth filter with a corner frequency of 20 Hz and a slope of 12 dB/oct is recommended for general use. The results of this study are relevant to biomechanical and clinical applications where the measurements of body dynamics and kinematics may include artifact sources. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates.

              Oscillations in the alpha and beta band (<35 Hz) display a dynamic behavior and show characteristic spatiotemporal patterns in sensory, motor and cognitive tasks. The event-related desynchronization (ERD) of alpha band and beta rhythms can be seen as a correlate of an activated cortical area with an increased excitability level of neurons. An event-related synchronization (ERS) of frequency components between 10 and 13 Hz may represent a deactivated cortical area or inhibited cortical network, at least under certain circumstances. It is hypothesized, that antagonistic ERD/ERS patterns, called 'focal ERD/surround ERS', may reflect a thalamo-cortical mechanism to enhance focal cortical activation by simultaneous inhibition of other cortical areas. Induced oscillations in the beta band (13-35 Hz, beta ERS) were found in sensorimotor areas after voluntary movement and after somatosensory stimulation. This may be interpreted as a state of 'inhibition' of neural circuitry in the primary motor cortex. Simultaneous activation of the motor cortex by e.g. motor imagery lead to an attenuation of the beta ERS. Moreover, there is evidence that the frequency of the induced beta oscillations represent a 'resonance-like frequency' of underlying cortical networks. However, further research is needed to investigate the functional meaning of bursts of beta oscillations below 35 Hz.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                19 February 2016
                2016
                : 10
                : 61
                Affiliations
                [1] 1Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf Düsseldorf, Germany
                [2] 2Department of Medical Engineering, Ruhr-University Bochum Bochum, Germany
                [3] 3Department of Computer and Information Science, University of Konstanz Konstanz, Germany
                [4] 4Zukunftskolleg and Department of Psychology, University of Konstanz Konstanz, Germany
                Author notes

                Edited by: Klaus Gramann, Berlin Institute of Technology, Germany

                Reviewed by: Johanna Wagner, Graz University of Technology, Austria; Pedro M. R. Reis, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany; Helen Jingi Huang, University of Michigan, USA

                *Correspondence: Lena Storzer lena.storzer@ 123456hhu.de
                Article
                10.3389/fnhum.2016.00061
                4759288
                26924977
                63494484-727a-490f-8886-8ade5e4351c1
                Copyright © 2016 Storzer, Butz, Hirschmann, Abbasi, Gratkowski, Saupe, Schnitzler and Dalal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 November 2015
                : 08 February 2016
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 71, Pages: 12, Words: 9266
                Categories
                Neuroscience
                Original Research

                Neurosciences
                eeg,bicycling,walking,motor control,oscillations,sensorimotor cortex
                Neurosciences
                eeg, bicycling, walking, motor control, oscillations, sensorimotor cortex

                Comments

                Comment on this article