0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraocular lens power calculation formulas accuracy in combined phacovitrectomy: an 8-formulas comparison study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Our study aimed to assess and compare the accuracy of 8 intraocular lens (IOL) power calculation formulas (Barrett Universal II, EVO 2.0, Haigis, Hoffer Q, Holladay 1, Kane and PEARL-DGS) in patients submitted to combined phacovitrectomy for vitreomacular (VM) interface disorders.

          Methods

          Retrospective chart review study including axial-length matched patients submitted to phacoemulsification alone (Group 1) and combined phacovitrectomy (Group 2). Using optimized constants in both groups, refraction prediction error of each formula was calculated for each eye. The optimised constants from Group 1 were also applied to patients of Group 2 – Group 3. Outcome measures included the mean prediction error (ME) and its standard deviation (SD), mean (MAE) and median (MedAE) absolute errors, in diopters (D), and the percentage of eyes within ± 0.25D, ± 0.50D and ± 1.00D.

          Results

          A total of 220 eyes were included (Group 1: 100; Group 2: 120). In Group 1, the difference in formulas absolute error was significative (p = 0.005). The Kane Formula had the lowest MAE (0.306) and MedAE (0.264). In Group 2, Kane had the overall best performance, followed by PEARL-DGS, EVO 2.0 and Barrett Universal II. The ME of all formulas in both Groups 1 and 2 were 0.000 (p = 0.934; p = 0.971, respectively). In Group 3, a statistically significant myopic shift was observed for each formula (p < 0.001).

          Conclusion

          Surgeons must be careful regarding IOL power selection in phacovitrectomy considering the systematic myopic shift evidenced—constant optimization may help eliminating such error. Moreover, newly introduced formulas and calculation methods may help us achieving increasingly better refractive outcomes both in cataract surgery alone and phacovitrectomy.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40942-021-00315-7.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis.

          The precision of intraocular lens (IOL) calculation is essentially determined by the accuracy of the measurement of axial length. In addition to classical ultrasound biometry, partial coherence interferometry serves as a new optical method for axial length determination. A functional prototype from Carl Zeiss Jena implementing this principle was compared with immersion ultrasound biometry in our laboratory. In 108 patients attending the biometry laboratory for planning of cataract surgery, axial lengths were additionally measured optically. Whereas surgical decisions were based on ultrasound data, we used postoperative refraction measurements to calculate retrospectively what results would have been obtained if optical axial length data had been used for IOL calculation. For the translation of optical to geometrical lengths, five different conversion formulas were used, among them the relation which is built into the Zeiss IOL-Master. IOL calculation was carried out according to Haigis with and without optimization of constants. On the basis of ultrasound immersion data from our Grieshaber Biometric System (GBS), postoperative refraction after implantation of a Rayner IOL type 755 U was predicted correctly within +/- 1 D in 85.7% and within +/- 2 D in 99% of all cases. An analogous result was achieved with optical axial length data after suitable transformation of optical path lengths into geometrical distances. Partial coherence interferometry is a noncontact, user- and patient-friendly method for axial length determination and IOL planning with an accuracy comparable to that of high-precision immersion ultrasound.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accuracy of Intraocular Lens Calculation Formulas.

            To compare the accuracy of intraocular lens (IOL) calculation formulas (Barrett Universal II, Haigis, Hoffer Q, Holladay 1, Holladay 2, Olsen, and SRK/T) in the prediction of postoperative refraction using a single optical biometry device.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Hoffer Q formula: a comparison of theoretic and regression formulas.

              A new formula, the Hoffer Q, was developed to predict the pseudophakic anterior chamber depth (ACD) for theoretic intraocular lens (IOL) power formulas. It relies on a personalized ACD, axial length, and corneal curvature. In 180 eyes, the Q formula proved more accurate than those using a constant ACD (P < .0001) and equal (P = .63) to those using the actual postoperative measured ACD (which is not possible clinically). In 450 eyes of one style IOL implanted by one surgeon, the Hoffer Q formula was equal to the Holladay (P = .65) and SRK/T (P = .63) and more accurate than the SRK (P < .0001) and SRK II (P = .004) regression formulas using optimized personalization constants. The Hoffer Q formula may be clinically more accurate than the Holladay and SRK/T formulas in eyes shorter than 22.0 mm. Even the original nonpersonalized constant ACD Hoffer formula compared with SRK I (using the most valid possible optimized personal A-constant) has a better mean absolute error (0.56 versus 0.59) and a significantly better range of IOL prediction error (3.44 diopters [D] versus 7.31 D). The range of error of the Hoffer Q formula (3.59 D) was half that of SRK I (7.31 D). The highest IOL power errors in the 450 eyes were in the SRK II (3.14 D) and SRK I (6.14 D); the power error was 2.08 D using the Hoffer Q formula. The series using overall personalized ACD was more accurate than using an axial length subgroup personalized ACD in each axial length subgroup. The results strongly support replacing regression formulas with third-generation personalized theoretic formulas and carefully evaluating the Holladay, SRK/T, and Hoffer Q formulas.
                Bookmark

                Author and article information

                Contributors
                cdiogo777@gmail.com
                Journal
                Int J Retina Vitreous
                Int J Retina Vitreous
                International Journal of Retina and Vitreous
                BioMed Central (London )
                2056-9920
                18 August 2021
                18 August 2021
                2021
                : 7
                : 47
                Affiliations
                GRID grid.9983.b, ISNI 0000 0001 2181 4263, Department of Ophthalmology, , Centro Hospitalar Universitário de Lisboa Central, ; Alameda de Santo António dos Capuchos, 1169-050 Lisbon, Portugal
                Author information
                http://orcid.org/0000-0002-5972-4068
                Article
                315
                10.1186/s40942-021-00315-7
                8371894
                34407889
                635ba045-5bb3-4c81-b9f8-042a781aabef
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 October 2020
                : 8 July 2021
                Categories
                Original Article
                Custom metadata
                © The Author(s) 2021

                vitreomacular interface disorders,phavocitrectomy,intraocular lens power,formulas accuracy

                Comments

                Comment on this article